Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://ir.librarynmu.com/handle/123456789/11972
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Galagan, R. | - |
dc.contributor.author | Stelmakh, N. | - |
dc.contributor.author | Rafalska, Y. | - |
dc.contributor.author | Andreiev, S. | - |
dc.contributor.author | Momot, A. | - |
dc.date.accessioned | 2024-07-08T09:22:26Z | - |
dc.date.available | 2024-07-08T09:22:26Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | http://ir.librarynmu.com/handle/123456789/11972 | - |
dc.description.abstract | This article presents a study aimed at using machine learning to automate the analysis of ultrasound images in the diagnosis of polycystic ovary syndrome (PCOS). Today, various laboratory and instrumental methods are used to diagnose PCOS, including the analysis of ultrasound images performed by medical professionals. The peculiarity of such analysis is that it requires high qualification of medical professionals and can be subjective. The aim of this work is to develop a software module based on convolutional neural networks (CNN), which will improve the accuracy and objectivity of diagnosing polycystic disease as one of the clinical manifestations of PCOS. By using CNNs, which have proven to be effective in image processing and classification, it becomes possible to automate the analysis process and reduce the influence of the human factor on the diagnosis result. The article describes a machine learning model based on CNN architecture, which was proposed by the authors for analyzing ultrasound images in order to determine polycystic disease. In addition, the article emphasizes the importance of the interpretability of the CNN model. For this purpose, the Gradient-weighted Class Activation Mapping (Grad-CAM) visualization method was used, which allows to identify the image areas that most affect the model's decision and provides clear explanations for each individual prediction. | uk_UA |
dc.title | Automation of polycystic ovary syndrome diagnostics through machine learning algorithms in ultrasound imaging | uk_UA |
dc.type | Article | uk_UA |
Розташовується у зібраннях: | Наукові публікації кафедри організації та економіки фармації |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
ACS_12_AUTOMATION+OF+POLYCYSTIC+OVARY+SYNDROME+DIAGNOSTICS.pdf | 516,53 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.