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Abstract: A therapeutic combination of azithromycin (AZM) and colistin methanesulfonate (CMS)
was shown to be effective against both non-PDR and PDR Klebsiella pneumoniae biofilms in vitro.
These anti-biofilm effects, however, may not correlate with effects observed in standard plate assays,
nor will they representative of in vivo therapeutic action. After all, biofilm-associated infection
processes are also impacted by the presence of wound bed components, such as host cells or wound
fluids, which can all affect the antibiotic effectiveness. Therefore, an in vitro wound model of
biofilm infection which partially mimics the complex microenvironment of infected wounds was
developed to investigate the therapeutic potential of an AZM-CMS combination against XDR K.
pneumoniae isolates. The model consists of a 3D collagen sponge-like scaffold seeded with HEK293
cells submerged in a fluid milieu mimicking the wound bed exudate. Media that were tested were
all based on different strengths of Dulbecco’s modified Eagles/high glucose medium supplemented
with fetal bovine serum, and/or Bacto Proteose peptone. Use of this model confirmed AZM to be a
highly effective antibiofilm component, when applied alone or in combination with CMS, whereas
CMS alone had little antibacterial effectiveness or even stimulated biofilm development. The wound
model proposed here proves therefore, to be an effective aid in the study of drug combinations under
realistic conditions.

Keywords: MDR/XDR/PDR Gram-negative infection; Klebsiella pneumonia; biofilms; wound model;
colistin methanesulfonate; azithromycin; combined antibacterial therapy
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1. Introduction

Lately, difficult-to-treat multi-drug resistant (MDR), extensively drug-resistant (XDR)
and pandrug-resistant (PDR) gram-negative bacterial (GNB) infections are occurring more
frequently all over the world, putting pressure on health care personnel to use so-called
last-resort antibiotic compounds. Different forms of polymyxins belong to this group
of last-resort agents. These compounds had been in use until the 1980s, but over the
last decades, they were recently put forward again, in response to increased numbers of
MDR/XDR/PDR GNB-associated infections [1–3].

In particular, two pharmacological types of these therapeutic polymyxins are currently
in use as last-resort antibacterial agents for the treatment of XDR and PDR GNB strains:
one of them is colistin sulfate (COL), and the other is colistin methanesulfonate (CMS,
also known as colistimethate sodium), an improved version of colistin [4,5]. CMS is
considered a prodrug of COL and transforms, upon uptake into an organism, into an active
polymyxin cation, though with an unknown ratio and uncertain pharmacodynamics and
with low effectiveness [4–6]. Generally, CMS might be considered a “weak antibiotic” with
a 28-day patient mortality of about 43% [7]. On the other hand, CMS is less toxic to patients
compared with COL; however, the compound is also less effective against bacteria and has
poor bioavailability, i.e., low concentration in the pleural cavity, bronchoalveolar lavage
(BAL), lung parenchyma, bones, and the cerebrospinal fluid, where the colistin distribution
may correspond to 15–25% of the plasma concentration or even remain undetectable [5,6,8].

Nevertheless, the effectiveness of even these weaker antibiotics may be synergistically
enhanced when applied therapeutically in combination with antibiotics with a different
mode of action. Macrolides, for example, may present themselves as an option for a
combined treatment with CMS or COL. While they are usually not a proper option for the
treatment of GNB, because these bacteria are considered inherently resistant against this
class of antibiotics [9], a combination of CMS and azithromycin (AZM) has been shown to
have a synergistic antibacterial effect on both planktonic growth and biofilm development
of a standard K. pneumoniae ATCC 10031 culture, in a physiological concentration range [10].
Moreover, this holds for non-MDR, MDR, and colistin-resistant PDR K. pneumoniae hospital
isolates as well [10].

Interestingly, this synergy between CMS and AZM in a standard agar-diffusion assay
did not match the effects observed in the corresponding biofilm models, possibly because
biofilms are natural aggregates while agar colonies are artificial ones due to the unnatural
conditions under which they are grown [11]. One might even say that the existence of
such discrepancies suggests that disc-diffusion and broth growth-based assays may not
be good predictors of antibiotic susceptibility in biofilms, and that biofilm-based tests
are better models to evaluate antibiotic effectiveness. Moreover, even biofilms are not
the best in vitro test systems to test antibiotic effectiveness, since they lack the eukaryotic
(host) component of the infection. Both the microbial pathogens and key wound bed
components (an extracellular matrix, the presence of cells from the host and the fluids in the
wound milieu) are critical, each in their own specific way, for biofilm-associated infection
development. These factors should therefore be taken into account when biomimetic
in vitro models are being studied [12].

One of these components is the extracellular matrix protein collagen. It is the most
abundant component of the extracellular matrix and provides tensile strength, regulates
cell adhesion, supports chemotaxis and migration, and directs tissue development [13].
At present, collagen can be extracted from various natural animal sources or be obtained
from recombinant production systems in bacteria, plants, etc. [14–17]. Due to the role
of the extracellular matrix in infection development, collagen-based gel matrices have
been used extensively as a substrate for the in vitro culture of biofilms [18]. Secondly, the
introduction of host cells into the model allows for a better description of the mechanisms of
the interactions between the cells and the bacteria, as well as of the involvement in biofilm
development and protection of the bacteria from being killed by antibiotics. Thirdly, the
medium environment used in the model to reproduce wound fluid milieu, affects antibiotic
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behavior. For instance, AZM seemed to have a stronger antibacterial effect on some GNB
in eukaryotic media [9,19–21]. This might be associated with the cell wall rebuilding due
to OprM downregulation [19] which may potentially improve the antibacterial effects of
other antibiotics used in combination with AZM [20,21]. This might also influence the CMS
susceptibility in a biofilm culture, since a synergistic effect between CMS and AZM was
already observed [10,20].

To produce a better model to evaluate the treatment efficiency of a combination
of antibiotics against wound infections, three biomimetic wound surface models were
constructed with collagen-based 3D scaffolds and seeded with epithelial-like cells. These
wound surface models were then used to investigate the therapeutic potential of CMS-AZM
combinations against ХDR K. pneumoniae isolates.

2. Results
2.1. The Influence of Different Culture Media and the Presence of HEK293 on the Growth of K.
pneumoniae UHI 1090

In order to construct a working model imitating a wound, both the scaffolding on
which the cells can develop, and the liquid phase, which mimics the wound fluids, should
be chosen carefully. The liquid phase should contain serum, red blood cells, plasma, and a
source of hydrolyzed proteins, such as brain heart infusion media or peptones [22]. At the
same time, the medium components should potentiate microbial growth as well as biofilm
formation and should not demonstrate any inhibitory effect. To evaluate this, different
modifications of the liquid phase content have been studied, following their effects on the K.
pneumoniae UHI 1090 culture. A total of three modifications of the general growth medium
of the bacterial culture were chosen to be seeded with or without the mammalian HEK293
cells: (1) 90% DMEM/high glucose, 10% fetal bovine serum (FBS); (2) 89.9% DMEM/high
glucose, 10% FBS, 0.01% Bacto Proteose Peptone; (3) 49.9% DMEM/high glucose, 50% FBS,
0.1% Bacto Proteose Peptone. The data obtained revealed that all culture media supported
the growth of K. pneumoniae UHI 1090 (Figure 1). An increase in optical density during 24 h
in culture was more pronounced in variants that contained the HEK293 cells (Figure 1a).
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Figure 1. The influence of culture medium and HEK293 cells on the growth of K. pneumoniae UHI 
1090. Growth shown under static conditions, after 24 h (a) and 48 h (b) of incubation. Data are ex-
pressed as mean values (n = 6). Error bars represent standard deviations. Data were analyzed by 
one-way ANOVA with a Barlette post hoc test. * Represents significant differences at p < 0.05, ** 
represents significant differences at p < 0.001. a–as compared to the control groups incubated 

Figure 1. The influence of culture medium and HEK293 cells on the growth of K. pneumoniae UHI
1090. Growth shown under static conditions, after 24 h (a) and 48 h (b) of incubation. Data are
expressed as mean values (n = 6). Error bars represent standard deviations. Data were analyzed
by one-way ANOVA with a Barlette post hoc test. * Represents significant differences at p < 0.05,
** represents significant differences at p < 0.001. a–as compared to the control groups incubated
without bacteria; b–as compared between the samples incubated with or without HEK293; c–as
compared to all other groups.
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Addition of HEK293 cells to each of the media promoted microbial growth within 24 h
of cultivation (Figure 1a) and even within 48 h for the third medium (49.9% DMEM/high
glucose, 50% FBS, 0.1% Bacto Proteose Peptone) (Figure 1b). The high FBS content in the
third medium emulates the bed wound exudate, the presence of which can stimulate bacte-
rial culture development. As demonstrated previously, K. pneumoniae may induce cytotoxic
effects in lung epithelial cells in vitro, as a kind of predatory effect, and the cytotoxicity was
highly dependent on the presence and properties of capsule polysaccharides [23]. Since K.
pneumoniae UHI 1090 is a hospital pathogenic isolate, it is quite possible that it has similar
cytotoxic effects on the HEK293 cells. Also, this third culture medium has the highest
content of proteins as well as their hydrolysis products, and the presence of HEK293 cells
was linked to the most pronounced stimulation of bacterial growth during 48 h in culture.
Since all media tested here showed good microbial tolerance, these culture media were
selected for further studies.

2.2. AZM and CMS Effects on the Viability of HEK293 Cells In Vitro

Some antibiotics may not only influence bacterial cells but have also a general toxic ef-
fect on eukaryotic cells by causing mitochondrial dysfunction, or by generating abnormally
high levels of oxygen reactive species, which leads to oxidative damage to the cells [24].
This prompted the need to study the effects of AZM and CMS on the metabolic activity of
the HEK293 cells (Figure 2).
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Figure 2. Cytotoxicity of colistin methanesulfonate (a) and azithromycin (b). The viability of HEK293
(human embryonal kidney) cell line treated with different concentrations of antibiotics for 48 h was
analyzed using an MTT assay. Data are expressed as mean values (n = 3). Error bars represent SD.
Control represents the HEK293 cultured without the addition of antibiotics. Data were analyzed by
the Mann–Whitney U-test; * represents significant differences at p < 0.05, ** represents significant
differences at p < 0.01, *** represents significant differences at p < 0.001, each time as compared to the
control samples incubated without the addition of antibiotics.

CMS seems to decrease the metabolic activity of the HEK293 cells by 17–34% in a
range from 1 to 50 mg/L compared to the non-treated controls (Figure 2a). As the HEK293
cell line was derived from the human embryonal kidney, this cytotoxicity of the CMS can be
associated with the nephrotoxicity known to be induced by polymyxins [25,26]. AZM also
exhibited cytotoxic effects towards HEK293, however, in a clear dose-dependent manner.
In concentrations of 20–90 mg/L, it induced a 9–44% reduction in the cell’s metabolic
activity with the maximum effect at the highest dose tested (Figure 2b), while at 10 mg/L
of AZM, the lowest concentration in the test, it did not cause any significant decrease in
metabolic activity.

According to pharmacokinetic literature, the maximum serum concentration of CMS
(Cmax) corresponds to 10–12 mg/L [27,28]. Therefore, only concentrations lower than this
Cmax should be tested, as higher concentrations are not physiologically relevant. Serum
Cmax for AZM varies from 1 to 9 mg/L with tissue concentrations 10–50-fold higher and
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a 24–34% increase in infected/inflamed tissues [29,30]. Our cytotoxicity assays, however,
suggest that 5 mg/L of CMS and 10 mg/L of AZM, which both fall into the physiological
range, would not impose a significant effect on the eukaryotic cell viability (Figure 2). These
amounts could therefore, be expected in patients’ sera and tissues following a standard
dosage regime.

2.3. Development and Characterization of a Porous Collagen Scaffold for a 3D Collagen-Based
Wound Model In Vitro

A porous 3D collagen-based matrix colonized with the epithelial-like HEK293 cells,
and immersed in culture media that mimic wound exudate, has been selected to develop an
in vitro model which maximally mimics the tissue-specific parameters during a wound-like
infection during which bacterial biofilms form on the soft tissues. Type I collagen was
selected for the development of the 3D scaffold because it is one of the main components of
the derma. The matrices were developed by freeze-drying a solution of bovine collagen
type I. The data received by SEM revealed that scaffolds had pores with an average pore
diameter of 117 ± 57 µm (Figure 3). The internal microstructure of the scaffolds consisted
of multi-layered porous sheets (as seen from the cross-section SEM image in Figure 3a)
with an average distance between the layers of 91 ± 50 µm. The porous structure of the
developed 3D scaffolds facilitates cell migration inside the scaffold, ensures the exchange of
the culture medium as well as gases and allows for the removal of cell metabolism products.
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(a) cross-section; (b) the surface of the scaffold.

This collagen scaffold was tested to see whether it could be colonized by the epithelial-
like cell line HEK293, as well as by a XDR hospital isolate of K. pneumoniae UHI 1090. To
evaluate whether HEK293 could colonize the developed collagen scaffold, 2 × 105 HEK293
cells were seeded onto a collagen scaffold of approximately 0.024 сm3 in volume, immersed
in DMEM/high glucose medium containing 10% FBS. After three days, colonization could
be confirmed (Figure 4).
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Interestingly, K. pneumoniae UHI 1090 failed to develop biofilms on this collagen
scaffold if it was not colonized with HEK293 (Figure 5). Briefly, when 104 CFU/mL of the
bacterial culture was inoculated, there were no bacterial biofilms observed following 48 h
of incubation. Instead, individually attached bacterial cells were found on the collagen
surface, and no CFU was found in the liquid medium, suggesting that no planktonic
bacterial subpopulation had developed.
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Figure 5. A 48-h old K. pneumoniae UHI 1090 culture developed on a 3D collagen scaffold. The
scaffold was not seeded with HEK293 cells, but fetal bovine serum was added as a source of blood
proteins (medium No. 1). Confocal laser scanning microscopy imaging, 120 µm × 120 µm × 35 µm,
10 µm per division. AmyGreen was used to stain collagen (green signal), and ethidium bromide was
used to stain the bacterial cells (red signal).

Thus, to mimic the conditions under which these can be observed in vivo, the presence
of eukaryotic cells might be specifically important to allow pathogenic isolates to develop
both their biofilms and planktonic subpopulations.
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2.4. AZM and CMS Effects on Biofilm Development by K. pneumoniae UHI 1090 in a 3D
Collagen-Based In Vitro Model

The first model, developed in medium No. 1, demonstrated well-developed biofilms
in a control where no eukaryotic cells remained and even better biofilm biomass where CMS
was added (Figure 6). The level of CFU in the liquid medium phase correlated with the
biofilm biomass present and was 107 for control and 108 CFU/mL for the CMS microcosm
correspondingly, which demonstrated a stimulatory effect of CMS instead of the expected
antibacterial action. In the AZM-containing microcosm, the Klebsiella CFU was 102 per mL
and the eukaryotic cells were mostly preserved and the biofilms did not develop with only
one field of view where a few attached bacterial cells were found (Figure 6, right image).
Both antibiotics had strong antibacterial effects and inhibited the development of the biofilm
on the wound model, however, with ten bacterial cells/mL as a planktonic subpopulation.
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Figure 6. In vitro wound model of a K. pneumoniae UHI 1090 biofilm exposed to colistin methane-
sulfonate and azithromycin. Images were taken after 48 h of biofilm development on a 3D collagen
scaffold seeded with the epithelial-like cell line HEK293 in medium No. 1 (90% DMEM/high glucose,
10% fetal bovine serum), supplemented with 5 mg/L colistin methanesulfonate (CMS) or 10 mg/L of
azithromycin (AZM), or both colistin methanesulfonate and azithromycin (CMS, AZM), or without
(control). Confocal laser scanning microscopy imaging, 120 µm × 120 µm × 35 µm, 10 µm per
division. AmyGreen was used to stain collagen (green signal) and ethidium bromide was used to
stain eukaryotic nuclei and bacteria (red signal).

Interestingly, bacterial functional amyloids were observed to be associated with Kleb-
siella cells when medium No. 1 was applied (Figure 7). Previously, we demonstrated
that AmyGreen visualizes functional bacterial amyloids more effectively than the classical
Thioflavine T [31,32]. However, amyloidogenesis was repressed when AZM was used.
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Figure 7. In vitro wound model of a K. pneumoniae UHI 1090 biofilm exposed to colistin methanesul-
fonate (enlarged details of parts of Figure 6). Images were taken after 48 h of biofilm development
on a 3D collagen scaffold seeded with the epithelial-like cell line HEK293 in medium No. 1 (90%
DMEM/high glucose, 10% FBS) supplemented with 5 mg/L colistin methanesulfonate (CMS) or
without (control). Confocal laser scanning microscopy imaging, 120 µm × 120 µm × 35 µm, 10 µm
per division. AmyGreen was used to stain collagen and bacterial amyloid fibers (green signal) and
ethidium bromide was used to stain eukaryotic nuclei and bacteria (red signal). Arrows point to
amyloid fibers associated with bacterial cells.

The second model was based on medium No. 2. This model proved to be less
effective than the previous one although neither medium No. 1 nor No. 2 demonstrate
any differences in the plate-based assay (Figure 8). Upon application of medium No. 2,
biofilms were only observed under control conditions, where no antibiotics had been
added. The corresponding planktonic subpopulations were also suppressed: the control
had 105 CFU/mL, whereas no CFU were observed in antibiotic-containing variants.

Medium No. 3 was used in the third model. Like in the first model, biofilm devel-
opment and absence of eukaryotic nuclei were observed in control and CMS-containing
variants when AZM and AZM + CMS variants demonstrated partially preserved initial
model structure with some individual bacterial cells attached (Figure 9). Plating assays
confirmed the cytological observations: planktonic cell concentrations of 108 CFU/mL were
observed in control and CMS-supplemented variants, while concentrations of 102 CFU/mL
were observed in AZM and AZM + CMS variants, which suggests that CMS did not show
any antibacterial effect even though K. pneumoniae UHI 1090 was sensitive to polymyxin.
On the contrary, AZM demonstrated strong antibacterial effects against planktonic and
biofilm subpopulations.
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Figure 8. In vitro wound model of a K. pneumoniae UHI 1090 biofilm exposed to colistin methane-
sulfonate and azithromycin. Images were taken after 48 h of biofilm development on a 3D collagen
scaffold seeded with the epithelial-like cell line HEK293, in medium No. 2 (89.9% DMEM/high glu-
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bromide was used to stain eukaryotic nuclei and bacteria (red signal).
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Figure 9. In vitro wound model of a K. pneumoniae UHI 1090 biofilm exposed to colistin methane-
sulfonate and azithromycin. Images were taken after 48 h of biofilm development on a 3D collagen
scaffold seeded with the epithelial-like cell line HEK293, in medium No. 3 (49.9% DMEM/high
glucose, 50% fetal bovine serum, 0.1% Bacto Proteose Peptone) supplemented with 5 mg/L colistin
methanesulfonate (CMS) or 10 mg/L of azithromycin (AZM), or both colistin methanesulfonate
and azithromycin (CMS, AZM), or without (control). Confocal laser scanning microscopy imaging,
120 µm × 120 µm × 35 µm, 10 µm per division. AmyGreen was used to stain collagen (green signal)
and ethidium bromide was used to stain eukaryotic nuclei and bacteria (red signal).
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3. Discussion

Polymyxin antibiotics demonstrate an extremely narrow therapeutic index of
2–4 mg/L [33]. This reduces the application of colistin considerably: an antibacterial
effect may overlap with the nephrotoxic dose regimen [26]. Thus, since the introduction of
polymyxins in the 1950s, the most effective therapeutic regime has been debated [8,33,34].
As the overall success of CMS therapy stands at approximately 50%, there is a predic-
tion that better balanced regime might improve the therapeutic outcome. This can be
achieved by increasing the Cmax up to the MIC and beyond. However, increasing the
dosage does not help to achieve this goal. Even 3 million units (MU) i/v every 8 h does not
provide a needed Cmax:MIC ratio for COL-susceptible GNB with MIC ≤ 2 (2022 EUCAST
Clinical Breakpoints; European Committee on Antimicrobial Susceptibility Testing). Partic-
ularly, 2 MU of CMS i/v every 8 h resulted in a COL concentration of 0.92 ± 0.46 mg/L or
1.03 ± 0.69 mg/L in another study, when 3 MU i/v every 8 h corresponded to 0.6–2.3 mg/L
of COL [8,27,35]. In another study, the Cmax of COL concentration in plasma following
i/v administration of 3 MU of CMS every 8 h, 4.5 MU every 12 h and 9 MU every 24 h
corresponded to 3.34 +/− 0.35, 2.98 +/− 0.27 and 5.63 +/−0.87 mg/L, respectively [36].
Moreover, all serum samples containing more than 4 mg/L COL eliminated P. aeruginosa,
whereas complete bacterial eradication was only achieved in 40% of the samples containing
less than 4 mg/L COL [36]. Since the MIC breakpoint for COL-susceptible GNB corre-
sponds to 2 mg/L, the widely used dosage regimes of CMS are associated with suboptimal
Cmax:MIC ratios, which still need to be determined. Still, based on [36] we can conclude
that the empirical Cmax:MIC-ratio would have to be more than two, or that Cmax has to
be more than 4 mg/L for GNB. Taking this into account, several approaches for a colistin
dosing regimen have been adopted, such as the application of a loading dose followed by a
maintenance dose, a higher dose as per patient renal function and targeted steady-state
concentrations of colistin, local administration (intraventricular or inhaled), and antibiotic
combination therapy [37]. Following their systematic review, Haseeb et al. [33] concluded
that a loading dose of 9 MU of CMS followed by a maintenance dose of 4.5 MU every 12 h
was considered the most appropriate dosing strategy to optimize the safety and efficacy of
treatment and improve clinical outcomes. Katip et al. [38] also concluded that the loading
dose of 9 MU should be used to increase the opportunity for patients to achieve favorable
outcomes. However, an increase in nephrotoxicity was found to be associated with the 9
MU loading dose application [38].

Another way to optimize the CMS therapy might be an approach to decrease the
MIC of COL/CMS by applying a synergistic antibiotic with another mechanism of action,
presumably one which can decrease metabolic activity and biofilm formation to reduce
phenotypic resistance. Macrolides correspond to such requirements. Even though none
of the macrolides are officially recommended to treat Gram-negative infections due to
their natural genetic resistance, there is some evidence that some macrolides have anti-
biofilm and anti-virulence effects on P. aeruginosa [9,39–42], which could be associated with
protein synthesis inhibition due to the formation of a ribosomal-macrolide complex [43,44].
This results in an inhibition of the general metabolic activity of a cell albeit without a
lethal effect due to drug efflux. Thus, any of the macrolides with the same mode of
action may be effective in metabolic suppression and, as a result, have anti-biofilm efficacy.
Indeed, two out of eight macrolides repressed biofilm formation by K. pneumoniae, with
azithromycin effectively suppressing ATCC, hospital acquired MDR/PDR and non-MDR
K. pneumoniae isolates [10]. It was quite surprising not to see both erythromycin and
clarithromycin as effective anti-biofilm macrolides, as both antibiotics were described as
effective as azithromycin in the treatment of P. aeruginosa-related infections [44–48]. Also, it
was unexpected to find josamycin as effective as azithromycin to suppress K. pneumoniae
biofilm development as several studies reported that josamycin was absolutely not effective
against P. aeruginosa [44,48,49]. That might suggest that effects of different macrolides on
Gram-negative bacteria are independent of the number of lactone rings, as was suggested
by the above-mentioned authors, but are, on the contrary species dependent.
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Recently we have investigated and described a synergistic effect of CMS and AZM
applied together against planktonic populations and biofilms of XDR/PDR and non-MDR
K. pneumoniae hospital isolates [10]. In order to investigate how the same combination of
antibacterial compounds can act against XDR (sensitive to colistin) K. pneumoniae infection,
three modifications of the in vitro wound model based on a collagen scaffold seeded with
epithelial-like cell line HEK293 were used. All the models differed only with respect to
the liquid phase in which the scaffold with eukaryotic cells was submerged. Even though
none of the liquid phases showed significant differences in their ability to support bacterial
growth, the models were considerably different in terms of bacterial behavior and antibiotic
effectiveness. The second model was less favorable for the modulation of the infection
process since the control variant (no antibiotic added) demonstrated weak bacterial growth
(105 CFU/mL). The first and the third models were more effective: the first model was able
to stimulate the appearance of bacterial amyloid fibrils, and both of the models confirmed
the absence of antibacterial activity of CMS (in a 5 mg/L concentration), as was expected.

Intriguingly, as was already discussed by [9], a significant difference was observed in
the effects of AZM and CMS on K. pneumoniae UHI 1090, where 9 mg/L of AZM was able
to reduce biofilm development by 7% in a K. pneumoniae UHI 1090 biofilm model (Figure 10,
adapted from Figure 5 in [10]) and the in vitro wound model used in this study.
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Figure 10. The effect of azithromycin on biofilm growth by K. pneumoniae UHI 1090 investigated
using biofilm assays and optical density (OD) measurements at 570 nm after 24 h incubation (adapted
from Figure 5 in [10]). Statistical differences were determined between media with azithromycin
versus control media without; **** p < 0.001.

In our in vitro wound model, AZM considerably suppressed the biofilm formation and
reduced CFU from 107–108 CFU/mL up to 102 CFU/mL, which confirmed a considerable
improvement of antibacterial efficiency of AZM against GNB in the physiologically relevant
environment as observed before [9,19–21]. Moreover, the synergistic action of AZM and
CMS observed in a biofilm model, as mentioned before (Figure 11, [10]), also considerably
improved. Briefly, a combined application of 8 mg/L CMS and 9 mg/L AZM reduced
biofilm development by 18% compared to the control. In our models, lower concentrations
of CMS (5 mg/L) and 10 mg/L AZM, demonstrated a bactericidal effect in model No. 1
and a considerable bacterial suppression in model No. 3, illustrated by weak bacterial
growth (100 CFU/mL) and a partial retention of the model structure.
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niae UHI 1090 investigated using biofilm assays and with optical density (OD 570) measurements
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media with azithromycin versus control media without; ** p < 0.01, *** p < 0.005.

Analysis of the effects of AZM in model No. 1 and model No. 3 demonstrates a
strong bactericidal effect of AZM against XDR K. pneumoniae UHI, which was not observed
in a biofilm model used before [10]. On the contrary, CMS did not demonstrate any
antibacterial (model No. 3) or even a growth-stimulating effect (model No. 1). It is well
known that CMS interacts with the negatively charged phosphate groups of Lipid A on
the outer membrane of gram-negative bacteria [50], leading to the impairment of the
three-dimensional LPS structure. However, the interaction of LPS with the chromosomal
DNA that was released from the dying HEK293 cells could possibly block the binding of
colistin to its cellular target. Also, DNA can serve as a scavenger for the CMS molecules.
It was demonstrated previously that polymyxin B could bind the chromosomal DNA
of mammalian cells [51]. The increased bacterial growth on the less nutritious culture
medium 1 in the presence of CMS could be explained by the early release of additional
nutrients from HEK293 stimulated by the cytotoxic action of CMS on these cells. On the
other side, sub-MIC concentrations of CMS were shown to enhance biofilm formation by
upregulating 197 genes responsible for the formation of extracellular polymeric substances,
the production of homoserine lactone and the expression of amyloid, as well as to slow
down cell metabolism by downregulating 88 genes in Acinetobacter baumannii [52]. Both the
stimulation effect as well as the enhancement of amyloid production observed in Figure 7
might therefore be a direct response to a sub-MIC regime of CMS.

4. Materials and Methods
4.1. Bacterial Strain and Culture Conditions

Klebsiella pneumoniae UHI 1090, a Ukrainian hospital isolate, was originally recovered
from a patient with enteritis and identified as an extensively drug-resistant (XDR) strain us-
ing antibiotic disc diffusion assays and EUCAST 2021 v.11.0 breakpoints [10]. An AST-N332
card was used to confirm the XDR strain phenotype with the VITEK 2 Advanced Expert
System. Antimicrobial susceptibility to polymyxin was tested with a SensiTest Colistin
(Liofilchem, Roseto degli Abruzzi, Italy) broth microdilution assay and the results were
interpreted according to EUCAST breakpoints. The strain was found to be sensitive to
polymyxin B and tigecycline but resistant to all β-lactams, fluoroquinolones and aminogly-
cosides (details of which can be found at https://doi.org/10.1371/journal.pone.0270983.s0
06) (accessed on 28 December 2022). The strain was stored as frozen stocks in 25 (v/v) %
glycerol at −80 ◦C.

https://doi.org/10.1371/journal.pone.0270983.s006
https://doi.org/10.1371/journal.pone.0270983.s006
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4.2. Mammalian Cell Lines

The human embryonal kidney cell line HEK293 was obtained from the Bank of Cell
Lines from Human and Animal Tissues of the Kavetsky Institute of Experimental Pathology,
Oncology and Radiobiology of the National Academy of Science of Ukraine. The cells were
cultured in Dulbecco’s modified Eagles medium (DMEM)/high glucose culture medium
(Biowest, Nuaillé, France), containing 10% fetal bovine serum (FBS) (Sigma-Aldrich, Saint
Louis, MO, USA), 100 U/mL of penicillin, and 100 mg/mL of streptomycin (Arterium,
Kyiv, Ukraine).

4.3. Viability of Eukaryotic Cells after Antibiotic Treatment

The influence of CMS and AZM on the viability of HEK293 cells was tested with the
colorimetric MTT metabolic activity assay. HEK293 cells were seeded 24 h prior to the
application of the antibiotics. Before any antibiotics were added, the culture medium was
changed to a medium without fetal bovine serum. HEK293 cells were then cultured at
37 ◦C and 5% CO2, at a concentration of 3 × 105 cells per well in a 96-well plate, in the
presence of varying concentrations of the antibiotic for 48 h. Cells grown in DMEM/high
glucose medium without antibiotics served as a negative control group. The assay was
performed according to [53]. Measurements for each concentration point were performed
in triplicate.

4.4. Effects of Different Culture Media and HEK293 Cells on the Growth of K. pneumoniae
UHI 1090

A total of 3 × 105 HEK293 cells/well were plated into 96-well culture plate 24 h before
bacterial inoculation. The HEK293 cells were cultivated in DMEM/high glucose medium,
containing 10% FBS at 37 ◦C, 5% CO2. The medium was changed before inoculation of
K. pneumoniae to the following media: (1) 90% DMEM/high glucose medium, containing
10% FBS; (2) 89.99% DMEM/high glucose medium, containing 10% FBS, 0.01% Bacto
Proteose Peptone (BD Biosciences, Franklin Lakes, NJ, USA); (3) 49.99% DMEM/high
glucose medium, containing 50% FBS, 0.01% Bacto Proteose Peptone (BD Biosciences,
Franklin Lakes, NJ, USA). Cell-free media served as control. K. pneumoniae UHI 1090
(104 CFU/well) was inoculated, and the incubation was prolonged at 37 ◦C, 5% CO2. OD
values were measured 24 h after inoculation at 620 nm. Each measurement was performed
in six replicates.

4.5. Cultivation of Bacteria and Antibiotic Treatments

The bacterial strains were cultured aerobically at 37 ◦C in Luria–Bertani (LB) medium
(10 g/L peptone, 5 g/L yeast extract and 10 g/L sodium chloride, with 12 g/L agar added
when solid media were needed [54]) and on Muller Hinton Agar (OXOID, Basingstoke,
UK). The strain was recovered from frozen stocks on LB plates before initiating overnight
shaken cultures to provide fresh inoculum for experiments (direct inoculation from frozen
stocks was found to reduce siderophore production and biofilm development consider-
ably; unpublished observations). Culture densities and dilutions were determined by
OD 570 measurements using a Multiskan™ FC Microplate Photometer (Thermo Fisher
Scientific, Waltham, MA, USA). A 10 g/L AZM (Pharmex Group, Boryspil, Ukraine) stock
solution was prepared using DMSO as a solvent, while a 1 g/L stock solution of CMS
(Forest Laboratories, Barnstaple, UK) was prepared in water. Both stocks were used within
30 min of preparation. Discs containing antibiotics (HiMedia Laboratories, Mumbai, India)
as well as AST-N332 cards for the VITEK 2 Advanced Expert System (bioMerieux, Marcy
l’Étoile, France) were used for antimicrobial susceptibility and sensitivity assays as listed
in [10].

4.6. Collagen Scaffold Preparation

Porous collagen scaffolds were produced from a solution of bovine atelocollagen in
acetic acid using the following freeze-drying technique. Briefly, a solution of 20 mg/mL
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of type I atelocollagen, isolated from a bovine tendon, was prepared in 0.5 M acetic acid.
Afterwards, the solution was centrifuged at 2500 rpm, +4 ◦C for 15 min to remove air
bubbles formed during mixing. The prepared collagen solution was then frozen in glass
Petri dishes (10 cm in diameter) at −40 ◦C and held for 18 h inside a freeze-dryer. The
frozen suspensions were subsequently sublimed at −40 ◦C to +22 ◦C for 24 h under a
vacuum. The atelocollagen scaffolds were stored at −20 ◦C until further use. Prior to usage,
the scaffolds were brought to +22 ◦C, cut into 3 × 4 mm rectangles under a sterile laminar
hood, and sterilized by UV-exposure for 40 min. Subsequently, they were equilibrated in
0.1 M HEPES (pH 8.0) at +4 ◦C overnight. Afterwards, the HEPES solution was changed
with DMEM/high glucose medium, containing 10% (v/v) FBS, 100 U/mL penicillin and
100 µg/mL streptomycin, in which the scaffolds were equilibrated for 48 h, at +37 ◦C and
5% CO2, before cell seeding.

4.7. Preparation of the Wound Model

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)/high
glucose, containing 10% (v/v) FBS, 100 U/mL penicillin and 100 µg/mL streptomycin.
The 2 × 105 cells were seeded on 0.3 × 0.4 × 0.2 сm3 porous scaffold. The cell-seeded
scaffolds were then transferred into fresh full culture medium and incubated at +37 ◦C, 5%
CO2 for three days. Prior to K. pneumoniae UHI 1090 inoculation, the scaffolds with cells
were washed three times in DMEM/high glucose medium and incubated in DMEM/high
glucose containing 10% FBS overnight at 37 ◦C, 5% CO2. 200 µL of an overnight culture of
K. pneumoniae UHI 1090 was inoculated into a model system where the final concentration
of the bacterial cells was 104 CFU/mL. The incubation lasted at 37 ◦C under high CO2
conditions for two days. Upon incubation, colony forming units (CFU) in the liquid phase
of a model were identified by a classical plating assay in triplicate.

4.8. Confocal Laser Scanning Microscopy (CLSM)

Samples taken from the wound model cultures were placed onto glass slides and
stained with 2 µg/mL ethidium bromide (ThermoFisher Scientific, Waltham, MA, USA)
and 1 µM AmyGreen (Department of Biomedicinal Chemistry, Institute of Molecular
Biology and Genetics, Kyiv, Ukraine) in DMSO (Sigma-Aldrich, Saint Louis, MO, USA)
without being washed, to limit the physical disruption of biofilm structures through
liquid movement. The samples were not fixed, and a cover slip was placed over the
stained samples before imaging. CLSM analysis was undertaken using a Leica TCS SPE
Confocal system with a coded DMi8 inverted microscope (Leica, Mannheim, Germany)
and Leica Application Suite X (LAS X) Version 3.4.1 (Leica Microsystems CMS, GmbH,
Wetzlar, Germany). Images were acquired using an excitation wavelength of 488 nm and
with emissions collected at 490–580 nm for AmyGreen and excitation at 532 nm and at
537–670 nm for ethidium bromide.

4.9. Scanning Electron Microscopy (SEM)

Freeze-dried samples of developed matrices were coated with a 10–30 nm thick gold-
metal layer to improve the surface conductivity and examined for morphological details
with the Jeol JSM 35C and Jeol JSM 6060LA scanning electron microscopes (Tokyo, Japan).

4.10. Statistical Analysis

Replicate data were processed using the statistical software package OriginPro 7.0
(OriginLab Corporation, Northampton, MA, USA), MS Excel for Windows and MaxStat Pro
3.6 (MaxStat Software, Jever, Germany). All results are presented as the mean ± standard
deviation. A value of p < 0.05 was considered statistically significant.

5. Conclusions

An effective combined antibacterial therapy against XDR and PDR K. pneumoniae
infections which is effective for most of the hospital isolates, can be a good alternative to
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the synergy tests or other time- and cost-consuming assays which have not been introduced
widely into clinic practice. AZM demonstrated effective antibacterial and antibiofilm
activities against K. pneumoniae UHI 1090 biofilm infections in in vitro wound models based
on a 3D collagen scaffold seeded with epithelial-like cell line HEK293. CMS did not have a
promising antibacterial effect in combination with AZM, except for a slight improvement
as observed in one model. On the other hand, CMS applied alone, either had no effect on
the Klebsiella population or even stimulated bacterial growth.
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