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The convergence of a vulnerable population and a notorious pathogen is devastating,

as seen in the case of sepsis occurring during the first 28 days of life (neonatal

period). Sepsis leads to mortality, particularly in low-income countries (LICs) and

lower-middle-income countries (LMICs). Klebsiella pneumoniae, an opportunistic

pathogen is a leading cause of neonatal sepsis. The success of K. pneumoniae as

a pathogen can be attributed to its multidrug-resistance and hypervirulent-pathotype.

Though the WHO still recommends ampicillin and gentamicin for the treatment of

neonatal sepsis, K. pneumoniae is rapidly becoming untreatable in this susceptible

population. With escalating rates of cephalosporin use in health-care settings, the

increasing dependency on carbapenems, a “last resort antibiotic,” has led to the

emergence of carbapenem-resistant K. pneumoniae (CRKP). CRKP is reported from

around the world causing outbreaks of neonatal infections. Carbapenem resistance in

CRKP is largely mediated by highly transmissible plasmid-encoded carbapenemase

enzymes, including KPC, NDM, and OXA-48-like enzymes. Further, the emergence of

a more invasive and highly pathogenic hypervirulent K. pneumoniae (hvKP) pathotype in

the clinical context poses an additional challenge to the clinicians. The deadly package

of resistance and virulence has already limited therapeutic options in neonates with

a compromised defense system. Although there are reports of CRKP infections, a

review on neonatal sepsis due to CRKP/ hvKP is scarce. Here, we discuss the current

understanding of neonatal sepsis with a focus on the global impact of the CRKP,

provide a perspective regarding the possible acquisition and transmission of the CRKP

and/or hvKP in neonates, and present strategies to effectively identify and combat

these organisms.

Keywords: neonatal sepsis,Klebsiella pneumoniae, carbapenem resistance, hypervirulence, CR-hvKP, antibiotics,

treatment, lower-middle-income countries

INTRODUCTION

The infiltration of sterile regions of the body with microorganisms and the manifestation of
a reaction to it thereof, is known as sepsis. When this occurs within the first 28 days of life
consequences can be dire, as the newborns first encounter a world of pathogens. Their immune
system has not yet developed to equip them in this battle. Thus, the total number of neonatal deaths
due to sepsis is a staggering half-million per year (1, 2).
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The pathogens that a neonate encounters are essentially
present everywhere, starting with the birth canal, the crib, the
hands of the nurse, or even the nasogastric tube. For the ones
who are premature or low-birth-weight and require prolonged
hospitalization or life support systems, the chances of infection
are very high (3). In low-income countries (LICs) and lower-
middle-income countries (LMICs), where nearly all resources
are inadequate, breaches in care or infection control can lead
to sepsis.

If one had to name an organism that readily becomes
resistant to antibiotics, can harbor numerous plasmids, can
survive in the environment & within the human gut, and
is a dread in the neonatal intensive care units (NICU) in
LMICs, it would be none other than Klebsiella pneumoniae
(4, 5). This organism has increasingly shown various facets of
a successful pathogen. Resistance to several antibiotics at a low
fitness cost makes it capable of causing outbreaks in neonatal
units. K. pneumoniae is resistant to a repertoire of antibiotics.
Resistance to carbapenems, considered as the “last resort” against
serious infections caused by Gram-negative bacilli, has limited
therapeutic options immensely. As options of treatment were
slowly failing, resistance to carbapenems was a cul-de-sac,
because carbapenem-resistant K. pneumoniae (CRKP) are also
resistant to several other antibiotics. Carbapenem-resistant genes
are frequently harbored on plasmids that can spread from one
species to the other. These resistance genes code for enzymes
that efficiently hydrolyze carbapenems and all other β-lactam
antibiotics. Further, most are also resilient against inhibition by
the commercially viable β-lactamase inhibitors. In addition to
carbapenem resistance, K. pneumoniae also had another ace up
its sleeve, hypervirulence. Hypervirulent K. pneumoniae (hvKP)
possess features that arm them to evade the host immune
system to cause infections in immunocompetent hosts. hvKP are
invasive and can disseminate to multiple sites.

With the World Health Organization (WHO) guidelines of
treatment inadequately poised to tackle CRKP and hvKP in the
neonatal population, this review presents different aspects of
CRKP and hvKP and their impact on the newborn.

NEONATAL SEPSIS: A DISEASE THAT
CAN’T BE IGNORED

According to the “Levels and Trends in Child Mortality report,
2019” the estimated global rate of neonatal deaths was 17 per
1,000 live births, and worldwide ∼6,700 neonates died each day
in 2019 (6). A notable disparity exists between high-income
countries (HICs) and LMICs in terms of the rate of neonatal
death (1, 6). Eighty percent of the entire global burden was from
two regions: Sub-Saharan Africa (42%) and Central and Southern
Asia (37%). In both these regions, the neonatal mortality rate is
around 24 deaths per 1,000 live births whereas in North America
and Europe the rate is three deaths per 1,000 live births (6).
Conditions related to infections such as sepsis and pneumonia as
well as conditions not related to infections such as preterm birth
complications, intrapartum-related events (e.g., birth asphyxia),
and congenital anomalies are the predominant causes of neonatal
death (1).

Sepsis is a dysregulated host response to systemic infections
leading to shock and multi-organ dysfunction (7, 8) and may or
may not be associated with a positive blood culture (9). When a
pathogen can be isolated from the blood or cerebrospinal fluid
of a neonate (a child within 28 days from birth) with noticeable
hemodynamic changes, it is defined as neonatal septicemia (3).
Overall, the rate of neonatal sepsis varies between 6.5 and 38 per
1,000 live births (hospital born only) in LMICs with bloodstream
infections (BSIs) ranging between 1.7 and 33 per 1,000 live births
(10). These rates are 3–20 times higher than the rates of the
industrialized countries which ranges between 1 and 5 per 1,000
live births (4). The neonatal sepsis rates from underdeveloped
countries are not exactly represented in the above figures because
in these countries many children are born at home. In the present
COVID-19 situation, hospitalization for delivery has decreased
further (11). Conversion of health management facilities to
COVID-19 hospitals or shutting down of medical facilities due
to COVID-19 spread has caused non-availability of proper
treatment to all other critical life-threatening conditions (12, 13),
including neonatal care (11, 14, 15).

In the most widely accepted notion, if sepsis is manifested
within 72 h of life, it is defined as Early-onset sepsis (EOS),
in which case, infections are conventionally thought to be
transmitted from the mother. Any sepsis presenting after 72 h
of life is defined as Late-onset sepsis (LOS) and the infection in
such cases is thought to be hospital or community-acquired (3, 8).
Premature and low-birth-weight neonates are more susceptible
to infections caused by microorganisms and thus, for low-
birth-weight neonates, every infection should be considered as
hospital-acquired (3). In a recent study, a significant difference
observed between EOS and LOS was associated with gestational
age, as premature neonates showed higher rates of LOS and it is
well-known that they are at higher risk of exposure to nosocomial
infections as these neonates require longer hospital stays, central
venous access, and often mechanical ventilation (16). In the
same study, it was also noted that birth by cesarean section was
more associated with LOS than birth by normal vaginal delivery
(16). In LICs and LMICs, EOS and LOS cannot be properly
distinguished. Due to poor hygienic practices in labor rooms and
nurseries, every infection regardless of the time of onset can be
hospital-acquired (10).

The disparity between LMICs and HICs is also reflected
in the etiological agents causing the infections. In LMICs
like India or Jordan, the causative agents of EOS are
similar to causative agents of LOS (17–19). Studies show
that Gram-negative bacteria, mainly K. pneumoniae and
Acinetobacter baumannii play a pivotal role in causing neonatal
septicemia along with Escherichia coli and Gram-positive
Staphylococcus aureus in resource-poor settings (17–21).
Whereas, in developed countries, group B Streptococcus, E.
coli, and S. aureus are the major pathogens causing neonatal
septicemia (3, 8).

THE BUG

Klebsiella pneumoniae is a Gram-negative, non-motile, and
usually encapsulated bacillus of the Enterobacteriaceae
family. This organism is omnipresent in the environment;
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FIGURE 1 | Graphical representation of existing disparity between high-income countries (HICs) and lower-middle-income countries (LMICs) regarding antimicrobial

resistance profile of K. pneumoniae; according to Center for Disease Dynamics, Economics, & Policy (CDDEP) data (37).

K. pneumoniae is found in the soil, water, plants, and sewage. K.
pneumoniae is also a part of the microbiome of the nasopharynx
and gastrointestinal (GI) tract of healthy human beings (22, 23).
It is an opportunistic pathogen and causes both hospital-
acquired and community-acquired infections (24). In hospitals,
K. pneumoniae causes both endemic infections and outbreaks
of epidemic strains; chances of acquisition of K. pneumoniae in
nasopharynx, GI tract, and skin increases with longer hospital
stays and use of invasive devices (22). K. pneumoniae is one of
the most predominant pathogens isolated from the intensive
care units (ICUs) (23) and causes infections such as bacteremia,
respiratory tract infections, urinary tract infection (UTI),
invasive liver abscesses, endophthalmitis, and endocarditis
(22, 25). Its capability of biofilm formation in the catheter
enables it to cause catheter-associated UTI (26).

K. pneumoniae is also the predominant causative pathogen
of neonatal sepsis (19, 27–30). Often a localized infection or
colonization of the urinary tract, GI tract, or respiratory tract
disseminates into the blood and leads to sepsis (26). The
role of K. pneumoniae in causing neonatal sepsis is discussed
later in detail.

Typing of strains is an integral part of epidemiological
studies and presently multi-locus sequence typing (MLST), a
method of distinguishing strains based on DNA sequences
of internal fragments of multiple house-keeping genes, is
prevalent. In K. pneumoniae, MLST is based on seven conserved
housekeeping genes (gapA, infB, mdh, pgi, phoE, rpoB, and
tonB) (31). The extensive drug-resistant (XDR) epidemic clones
of K. pneumoniae are ST11, ST14, ST15, ST17, ST37, ST101,
ST147, ST258, ST512, and these are reviewed elsewhere (32). K.
pneumoniae can also be serotyped based on its capsular antigens
(78K antigens) (33).

Virulence of K. pneumoniae is essentially linked with its
capsule which serves a dual purpose in the cell: it protects
the cell from phagocytosis mediated by polymorpho-nuclear
granulocytes and serum resistance by inactivation of one of the
complement components (C3B). The pili or fimbriae is another
component of the bacterial cell that helps in pathogenicity by
mediating the adhesion of the pathogen to the mucosal layer
and/or epithelial cells of the lower urinary tract, respiratory
tract, and GI tract. Type 1 pili mediate adherence and then
colonization of urinary and respiratory tract. Mannose-resistant
Klebsiella-like hemagglutinin (MR/K-HA), a Type 3 pili, helps
in the adhesion to Bowman’s capsule, renal vessels, and tubular
basal membranes of the human kidney (22). K. pneumoniae
often possess large virulence plasmids (pLVPK) which harbor
rmpA, rmpA2, and aerobactin biosysnthesis genes (34). With
the possession of such virulence traits such as hypercapsule
production, aerobactin and yersiniabactin synthesis, the bacterial
cell becomes hypervirulent (34, 35).

For more than two decades, the increase in septicemia and
meningitis in newborns caused by Klebsiella has been a matter
of concern (22). Acquired resistance to critical antibiotics and
hypervirulence in this fast-evolving pathogen is bound to make
the existing scenario even more unmanageable.

THE RESISTANCE OF THE BUG TO THE
DRUGS

The indiscriminate use of antimicrobials has inadvertently lead to
the emergence of resistance to different drugs (32, 36). The stark
difference between antibiotic resistance rates of K. pneumoniae
between HICs and LMICs is evident in Figure 1.
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Klebsiella pneumoniae is notorious for its ability to acquire
antibiotic resistance determinants and it belongs to the ‘critical’
category in the WHO global priority pathogen list (38). It is one
of the ESKAPE pathogens [Enterococcus faecium, Staphylococcus
aureus, K. pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, Enterobacter spp.] which are mostly responsible for
the spread of antibiotic resistance in hospital-acquired infections
(36). The presence of Klebsiella in both the environment and the
human body allows them to acquire a large variety of antibiotic
resistance determinants. K. pneumoniae has a repertoire of
around 400 antibiotic resistance genes which is almost double
that of other pathogens (24). As the soil and the gut are both
hot-spots for the inter-genus transfer of antibiotic resistance, K.
pneumoniae has a selective advantage as it dwells in both these
niches (24). Most of the antibiotic resistance determinants either
appear first in K. pneumoniae or they are quickly acquired by this
organism.K. pneumoniae also show higher variability in the G+C
contents of its genomes than its other counterparts, indicating
that it acquires external DNA from varied sources (24).

As with other Enterobacteriaceae, the majority of
antimicrobial resistance (AMR) determinants are plasmid-
mediated in K. pneumoniae (24, 36). Most pathogenic K.
pneumoniae carry three or more AMR plasmids and the stability
of the plasmids are relatively more in this organism compared
to E. coli (24). The segment of the plasmid responsible for
replication control to maintain a specific plasmid copy number
is called a replicon (32). PCR-based replicon typing method (39)
and advances in genomics have helped in recognizing plasmid
types of K. pneumoniae. Various replicons have been found
in K. pneumoniae, either alone or in combinations, which are
IncFIIK, IncN1, IncX3, IncA/C, IncR, IncHI1-FIA, IncHIB-FIB,
IncHI2, IncL (32). One of the replicons found frequently in
K. pneumoniae, IncFIIK replicon, is present in multi-replicon
plasmids which also possess IncFIB replicons (32). IncFIIK
plasmids have a narrow host range and are rarely found outside
this genus. Whereas, other replicons, IncR, IncA/C, IncX3,
IncHI1 are of broad host range and thus act as a shuttle for
inter-genus horizontal gene transfer (32). Apart from the transfer
of genes via plasmids, mobile genetic elements such as insertion
elements (e.g., IS26), transposons (e.g., Tn4401a), and integrons
(e.g., Integron1), present in the plasmids, mediate mobilization
of the resistance genes (often gene cassettes) between different
plasmids or between chromosome and plasmids (32).

THE CRKP MENACE

In the 1980s, extended-spectrum β-lactamases (ESBLs)
producing K. pneumoniae emerged and spread throughout
the world (22, 40). This led to the use of the carbapenems
(meropenem, imipenem, ertapenem), a β-lactam antibiotic,
which became the antibiotic of choice to treat infections caused
by ESBL-positive K. pneumoniae (40, 41). Eventually, with
use of carbapenems, a new group of enzymes emerged- the
carbapenemases, which could hydrolyze most of the β-lactam
antibiotics including the carbapenems. The first plasmid-
mediated carbapenemase IMP-1 was identified in K. pneumoniae

in 1991 (42). KPC-1-producing K. pneumoniae was reported
from the USA in 1996 (43). This carbapenemase was named
KPC-1, for K. pneumoniae carbapenemase. Since then other
carbapenemases have also emerged and CRKP has rapidly spread
worldwide (23, 44).

Carbapenem resistance in K. pneumoniae or other
bacteria occurs by two main mechanisms: (i) production of
carbapenemases (45), and (ii) porin loss (OmpK35 andOmpK36)
combined with the presence of AmpC cephalosporinases or
ESBLs such as CTX-M-15 and/or overexpression of efflux
pumps (21, 46, 47).

As carbapenemases are primarily mediated via mobile genetic
elements contributing to the spread of carbapenem resistance,
a more detailed discussion of these enzymes are done here.
Carbapenemases belong to the molecular class A (e.g., KPC,
GES, IMI), class B (e.g., IMP, VIM, NDM), and class D
(e.g., OXA-48-like) of β-lactamases according to the Ambler
classification. Molecular class A and D enzymes are called serine
carbapenemases as they contain serine molecule in their active
site andmolecular class B enzymes are calledmetallo-β-lactamase
(MBLs) as they contain two Zn2+ ions in their active site. MBLs
cannot hydrolyze the monobactam aztreonam. Class A serine
carbapenemases are predominantly inhibited by tazobactam.
Class B MBLs are inhibited by EDTA, dipicholinic acid, or 1,10-
o-phenanthroline in vitro. Class D carbapenemases (e.g., OXA-
48-like) which hydrolyze oxacillin, cloxacillin, and carbenicillin,
are inhibited in vitro by NaCl (46). As different carbapenemases
have emerged over time, many have several enzymatic variants
(such as KPC-2, KPC-3, NDM-5, NDM-7, OXA-48, OXA-232,
IMP-4, IMP-8, etc.) with higher catalytic efficiency, stability, or
better metal ion binding capacity (47). All such carbapenemases
are harbored on plasmids which have shown both intra- and
inter-species transmission.

KPC is a plasmid-mediated molecular class A serine
carbapenemase. blaKPC gene is found within a unique transposon
Tn4401 variant which has led to the mobilization of the gene to
different types of plasmids and through the plasmids to other
organisms (32). This carbapenemase has spread vastly in Italy,
Greece (48), and the USA (49). Currently, there are 75 alleles
reported in the NCBI pathogens database (https://www.ncbi.
nlm.nih.gov/pathogens/refgene/#blaKPC), of which KPC-2 and
KPC-3 are prevalent. Association of the KPC-2 and KPC-3 with
epidemic clone ST258 is the pivotal factor for the spread of
these genes.

New Delhi metallo-β-lactamase (NDM-1) is the most widely
disseminated class B metallo-β-lactamase. It was first reported
in a K. pneumoniae and E. coli in 2009 and was recovered
from a Swedish patient returning from India (50). Although
NDM-1 was the most prevalent variant to date, variants such
as NDM-4, NDM-5, NDM-7 which are more stable in the zinc-
deprived condition due to an M154L mutation have rapidly
emerged (51, 52). Currently, there are 31 alleles of blaNDM
reported in the NCBI pathogens database (https://www.ncbi.nlm.
nih.gov/pathogens/refgene/#blaNDM). blaNDM is found across
various sequence types of K. pneumoniae, no association
with any particular ST was reported (53). Co-existence of
many other antibiotic resistance determinants like armA, rmtB
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(aminoglycoside resistance), qnrB, qnrS, aac(6
′
)-Ib-cr (plasmid-

mediated fluoroquinolone resistance), and blaCTX−M−15 (ESBL)
(21, 28, 54) is often noticed in these strains. blaNDM−1 is
present in varied broad host plasmids (e.g., IncX3, IncA/C,
IncHIB-M/FIB-M) (32). The blaNDM gene is almost always found
bracketed by a truncated or entire ISAba125 element (upstream)
and a bleMBL gene (downstream) (55).

Molecular class D carbapenemases such as OXA-48 is
also a very potent transferable carbapenemase emerging in
Enterobacteriaceae (45). It was first reported in 2001 fromTurkey
in a multidrug-resistant (MDR) K. pneumoniae isolate which
possessedMBLs and lacked outer membrane proteins (53). OXA-
48 has now spread to all continents except Antarctica (56).
OXA-48 and OXA-48-like carbapenemases (e.g., OXA-181 and
OXA-232) cannot hydrolyze extended-spectrum cephalosporins
and can selectively hydrolyze carbapenems (imipenem and
ertapenem). Although, blaOXA−48 is associated with diverse
STs, epidemic STs such as ST101, ST147, ST15, and ST395 are
more common than others. blaOXA−48 is generally bracketed by
IS1999 in transposon Tn1999 and blaOXA−181 is associated with
ISEcp1 (57). OXA-181 differs from OXA-232 by a single amino
acid substitution and both have a similar genetic environment,
suggesting that blaOXA−181 is the probable progenitor of
blaOXA−232. OXA-181 was first reported from Indian hospitals
and is endemic to Indian subcontinent. It is now reported
from Asia, Africa, Middle East, Europe, North America, and
Oceania (56). OXA-232 was first isolated in France from three
patients who just returned from India. The blaOXA−232 gene was
carried in a ColE2 plasmid, situated within a Tn2013 transposon,
downstream a ISEcp1 element (58). OXA-232 has been majorly
associated with ST14, ST15, and ST16. OXA-232 is endemic in
India and has now been reported from other parts of Asia, USA,
Africa, and Europe (56).

IMP and VIM are two other plasmid-mediated MBLs. IMP
(imipenemase) carbapenemase was first reported in the year 1991
from Japan from an Serratia marcescens strain (59). Followed
by its identification in K. pneumoniae strains from Japan
and Singapore, IMP-4-positive K. pneumoniae was reported
from Australia in 2002 and IMP-8-positive K. pneumoniae
was reported from Taiwan 2001–2002 and later from various
other countries. VIM (Verona integron-encoded metallo-β-
lactamases) are spread in Southern Europe and also in other
countries (23). VIM-1 and VIM-2 were discovered in P.
aeruginosa and later found in Enterobacteriaceae. IncN plasmid
carrying blaVIM−1 was later reported from K. pneumoniae in
Greece (60). Both these enzymes are associated with class 1
integrons and various insertion sequences such as IS26, IS6100
which are associated with specific plasmid types (61).

DRUG-RESISTANT BUG AND THE
NEWBORN

Various studies have been published regarding the spread
of carbapenem-resistant Enterobacteriaceae but the data on
neonatal sepsis is infrequent. Here we present the studies related
to neonatal sepsis caused by CRKP (Table 1). We have focused

on the major carbapenemases such as KPC, NDM, and to some
extent OXA-48, IMP, and VIM. The genetic aspects of these
carbapenemases are already discussed in the above section.

Over the last few years, KPC-producing K. pneumoniae have
been reported in neonates from various countries such as Egypt
(75), Jordan (17), China (71, 74, 77), and India (76). blaKPC−2-
positive K. pneumoniae caused infections in China and India.
The sequence types of the corresponding strains from China
and India were however different: strains from China belonged
to ST11 whereas, strains from India belonged to ST147 (76).
blaKPC was harbored in large plasmids along with other resistance
determinants such as blaCTX−M−15,TEM,SHV,OXA−1, rmtB, aac(6

′
)-

Ib-cr, qnrB, and qnrS. The genetic environment of blaKPC−2

in ST147 strains from India corroborated with the genetic
environment of the other blaKPC−2-possessing strains recovered
from adults, where blaKPC−2 was associated with IS elements
ISKpn6 and ISKpn7, plasmid type IncFII, and transposon Tn
4401. All neonates in this study had an overlapping stay in the
hospital so a chance of transmission from one neonate to another
was predicted (76). In one of the above studies from China,
three of the four infants died due to the infection caused by
KPC-producing K. pneumoniae. Only one neonate responded to
the therapy of amikacin in combination with imipenem (74).
The other study from China mentioned the isolation of KPC-
producing CRKP not only from blood but also from sputum,
urine, aspiration catheter, and hospital environment, indicating
that the hospital environment can harbor CRKP strains which
may cause disease later (71). The study from Jordan interestingly
showed that infection due to KPC-producing K. pneumoniae
and Acinetobacter spp. led to higher mortality and previous
exposure to carbapenems and vancomycin significantly increase
this risk (17). Further, the study from Egypt showed that neonatal
mortality was inversely related to gestational age and birth-
weight. The same study also showed that neonates who eventually
succumbed to the infection had a significant reduction in platelet
count and hemoglobin levels (75).

Shortly after the report of blaNDM−1 in an adult patient
in 2009, blaNDM−1−possessing K. pneumoniae causing
neonatal septicemia was identified in 2011 from India (62).
Three retrospective studies from the same unit showed that
carbapenem-resistant K. pneumoniae not only persisted in the
unit but gradually became the most predominant carbapenem-
resistant organism causing septicemia (21, 28, 55). One of these
studies also reported the in vivo interspecies plasmid transfer
event of blaNDM−1 in a neonate from whom Enterobacter cloacae
was isolated initially and E. coli later. The study showed that the
blaNDM−1 plasmid in both the species was identical indicating its
possible transmission between Enterobacter cloacae and E. coli
(55). The study of Datta et al. reported that male sex, low birth
weight, birth at extramural centers were significantly associated
with sepsis caused by NDM-1-positive isolates. However, sepsis
caused due to these isolates did not result in a higher mortality
rate (21). NDM-positive K. pneumoniae-mediated neonatal
infections are now reported from India (51, 85), Nepal (65),
China (68–70, 72, 77), Nigeria (66), Colombia (63), and Turkey
(67). Although blaNDM−1 was the most prevalent allele to date,
alleles such as blaNDM−4 and blaNDM−5 are slowly emerging
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TABLE 1 | Carbapenem-resistant K. pneumoniae causing neonatal septicemia or intestinal colonization.

Country Study

timeline

Year of

publication

Clinical

presentation

Source(s) Sequence

Types (STs)

Carbapenemases

identified

Other resistance genes identified Plasmid

type(s) and

integrons

References

India NA 2011 Sepsis Endotracheal

aspirate

and Blood

NDa NDM-1 blaCTX−M−15,TEM−1,OXA−1,SHV−1 NAb (62)

Colombia Aug

2011–Jan

2012

2013 Hypoxic-

ischemic

encephalopathy,

respiratory

distress

syndrome,

necrotizing

enterocolitis,

and sepsis

Blood ST1043 NDM-1 qnrA and blaSHV. IncA/C, IntI1 (63)

India 2007–2011 2014 Septicemia Blood ND NDM-1 blaCTX−M−15,TEM−1,OXA−1,CMY,SHV−1,

armA, rmtB, rmtC, aac(6’)-Ib,

and aac(6’)-Ib-cr

IncN, IncHIB-

M/IncFIB-M,

IncFIIK, IncR

(21, 55)

India 2012 2014 Sepsis Blood ND NDM-1 blaCTX−M−15 ND (64)

Nepal Aug

2011–June

2012

2014 Suspected

sepsis

Blood or

Cerebro-

spinal

fluid.

ST15 NDM-1 blaCTX−M−15,SHV−28,TEM−1,OXA−1,

qnrB1, aac(6’)-Ib, and

aac(6’)-Ib-cr,

Multireplicon

plasmid IncHI1B/IncFIB

(65)

Nigeria Sept

2012–Sept

2016

2014 Sepsis Blood. ST476 NDM-5 blaCTX−M−15, blaOXA−1, blaOKP−B−6

blaTEM−1, aac(6’)-Ib-cr,

bleMBL, qnrB1, and sul2.

IncX3 (66)

Turkey 2013 2014 Colonizer Rectal swab ND NDM-1 blaCTX−M−15,CTX−M−3,SHV−1,SHV−27,OXA−1,

and rmtC

NA (67)

China 2012–2013 2015 Neonatal

sepsis,

neonatal

pneumonia,

necrotizing

enterocolitis,

and

respiratory

distress

syndrome

Blood ND NDM-1 qnrS and

blaCTX−M−15,CMY−4,TEM−1,SHV−1.

ND (68)

China Apr 2011–Oct

2013

2017 Neonatal

pneumonia

Sputum,

blood,

Umbilical secretion

ST 20,

ST54, ST705,

and ST290

NDM-1,

IMP-4, IMP-8

blaCTX−M−14,CTX−M−15,TEM−1,DHA−1 ND (69)

China June

2016–Aug

2016

2018 Sepsis,

respiratory

distress

syndrome

Blood Sputum ST234 and

ST1412

NDM-1 qnrB4 and blaCTX−M−14,SHV−148, ND (70)

(Continued)
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TABLE 1 | Continued

Country Study

timeline

Year of

publication

Clinical

presentation

Source(s) Sequence

Types (STs)

Carbapenemases

identified

Other resistance genes identified Plasmid

type(s) and

integrons

References

China 2015 2018 NA Blood, urine,

sputum,

aspiration

catheter, and

radiant

warmer

ST11, ST20,

and ST888

NDM-1 and

KPC-2

blaCTX−M−14,CTX−M−15,TEM−1 ND (71)

China May

2014–Aug

2014

2018 Septicemia,

pneumonia

Blood,

Sputum, and

Urine

ST1419 and

ST101

NDM-1 blaSHV−12,CTX−M−15,TEM−1 ND (72)

India Dec

2015–Jan

2017

2018 ND NDM-1,

NDM-4, and

NDM-5

blaOXA, blaCMY, and blaSHV. IncFIA,

IncFIC, IncF,

IncK, IncFIB,

IncY, IncFIIA,

(51)

India Jan

2012–June

2014

2019 Septicemia Blood ND NDM-1 qnrB, qnrS, aac(6’)-Ib,

aac(6’)-Ib-cr,

blaCTX−M−15,TEM−1,OXA−1,SHV−1,

armA, rmtB, and rmtC.

IncFIIK and

IncHIB-M

(28)

India July

2016–Dec

2017

2019 Septicemia Blood ST29, ST347,

ST1224, and

ST2558

NDM-1 blaCTX−M−15,

qnrS1, qnrB1, aac(6’)-Ib, and

aac(6’)-Ib-cr.

IncFIIK (73)

China June

2010–Sept

2010

2013 Sepsis NA ST11 KPC-2 blaCTX−M−14,CTX−M−15,TEM−1,SHV−11,SHV−12,

rmtB, aac(6’)-Ib-cr, and qnrS

ND (74)

Jordan Jan

2012–Dec

2015

2018 Sepsis Blood ND KPC ESBL genes ND (17)

Egypt Feb

2019–Sept

2019

2020 Sepsis Blood ND KPC, VIM,

and NDM

blaCTX−M, blaOXA−1, qnrS, and qnrB. ND (75)

India 2013–2016 2020 Sepsis Blood ST147 KPC-2 blaCTX−M, blaTEM,SHV,OXA, qnrB, oqxA,

oqxB, aac(6’)-Ib-cr, and aac(6’)-Ib

IncFII (76)

China 2018–2019 2020 unknown Sputum, pus,

ascites, urine,

blood

ST11, ST76,

ST4854,

ST35, ST34

KPC, NDM-1,

IMP-4

NA NA (77)

Egypt Nov

2015–Apr

2016

2020 Late-onset

sepsis

Blood ND OXA-48 and

NDM

ND ND (16)

India Jan 2016 2020 Septicemia Blood ST23 OXA-232 blaSHV−190, blaTEM−1B, blaCTX−M−15,

blaCMY−4, aac(6’)-Ib-cr, oqxB, oqxA,

and qnrB1

IncColKP3

type

(78)

China Apr- June

2016

2017 NA NA ST15 OXA-232 blaCTX−M−15,blaSHV−1 IncColE type (79)

(Continued)
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in K. pneumoniae causing neonatal infections (51, 52). It was
observed that isolates harboring blaNDM−1 are not associated
with any particular sequence type and these strains belonged
to varied STs (ST15, ST17, ST20, ST29, ST76, ST101, ST234,
ST347, ST433, ST476, ST888, ST1043, ST1412, ST1419, ST1224,
ST2558, ST4854) (Table 1). These isolates also possessed
several antibiotic resistance determinants such as armA, rmtB
(aminoglycoside resistance), qnrB, qnrS, aac(6

′
)-Ib-cr (plasmid-

mediated fluoroquinolone resistance), blaCTX−M−15 (ESBL)
(21, 28, 86) along with blaNDM−1 gene in different plasmid
types such as IncFIIK, IncHIB-M, IncFII, IncFIA, IncFIB, IncF,
IncA/C, IncL/M, IncA/C, IncX3, etc. (28, 51).

Isolates harboring blaNDM−1 have also caused outbreaks
in several healthcare settings. During August 2011–Jan 2012,
an outbreak occurred due to K. pneumoniae ST1043 in a
neonatal unit in Colombia infecting six neonates. As the
neonates had no contact with people from countries that
reported NDM-1-producing bacteria, the authors proposed
that autochthonous clones were acquiring the blaNDM gene
(63). Another outbreak around the same time was reported
from Nepal by a blaNDM−1-positive K. pneumoniae ST15. This
outbreak caused high mortality among the neonates. Apart from
the outbreak cluster, three smaller genetically close clusters were
also identified in this study (65). An outbreak of NDM-5-
producing K. quasipneumoniae was reported from Nigeria in
April 2016. The outbreak occurred when the neonatal ward
was overcrowded and less critical neonates often shared cots.
blaNDM−5 gene was carried on an IncX3 plasmid (66). Five
separate studies from different parts of China (Nanjing, Wuhan,
Hunan, Jiangsu, Shandong) reported outbreaks of blaNDM−1-
possessing K. pneumoniae in neonatal units. Strains were isolated
from blood or sputum or umbilical secretions of neonates
and belonged to different sequence types (68–70, 72, 77). In
another study from China, five CRKP isolated from neonates
(blood, urine, and catheter tips) possessed blaNDM−1 and
belonged to ST20 (n = 4) and ST888 (n = 1), which were
susceptible to gentamicin, amikacin, aztreonam, ciprofloxacin,
and levofloxacin. NDM-1-producing ST20 strains (n = 2) were
also isolated from the hospital environment (71). A systematic
review from China on carbapenem-resistant Enterobacteriaceae
reviewed seventeen studies of neonatal infections among which
seven studies were of NDM-1-producing K. pneumoniae (87).

OXA-48-positive CRKP causing neonatal infection or
intestinal colonization was reported from Algeria, Spain, and
Egypt (75, 80, 81). In the study from Algeria, blaOXA−48-carrying
K. pneumoniae of two different STs (ST13 and ST1878) were
found colonizing the gut of the neonates in two maternity wards.
Carriage of carbapenem-resistant strains was significantly related
to the low-birth-weight of the neonates (81). In the study from
Egypt, K. pneumoniae was the predominant organism causing
LOS but not EOS. Eventually, the mortality was significantly
higher in neonates suffering from LOS (16). OXA-232, another
OXA-48-like enzyme, was reported from a hypermucoviscous
K. pneumoniae causing septicemia from India. The gene was
carried in a ColKP3 type plasmid (73). Another clonal outbreak
of OXA-232-producing K. pneumoniae ST15 was reported from
a NICU in Shanghai, China (79).
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The other carbapenemases such as IMP or VIM have not
been reported frequently in neonatal infections. IMP-38-positive
CRKP causing respiratory distress syndrome in neonates was
reported from China. The nine IMP-38-positive strains were
clonal and were isolated from the trachea cannula of neonates.
blaIMP−38 was a novel allele and differed by a single mutation
from IMP-4 which was found in the other wards of the same
hospital (84). In another recent study from China, fourteen
blaIMP−38-possessing K. pneumoniae ST307 were recovered from
neonates suffering from sepsis (88). Another variant, IMP-4 has
also been reported from China causing neonatal infections (69,
77, 87). VIM-positive CRKP was recovered from the neonates
in the USA, Italy, and Egypt (75, 83, 89). In the study from
Italy, VIM-1, associated with an IncA/C plasmid, was primarily
found in K. pneumoniae ST104 recovered from the rectal swabs
of neonates admitted in a NICU from 2015 to 2016. The strains
were susceptible to fluoroquinolones, amikacin, and colistin (83).

It is noteworthy that earlier studies reported the presence
of a single carbapenemase in K. pneumoniae but in recent
years reports of co-occurrence of multiple carbapenemases are
emerging (16, 75, 82). In a recent study from India OXA-
181/OXA-232 was concomitantly present with NDM-5 in K.
pneumoniae causing neonatal septicemia (82). A study from
Egypt also reported (previously mentioned) presence of blaNDM
and blaVIM in K. pneumoniae causing LOS. blaKPC was also
present in 96% of these strains (75). Another (previously
mentioned) study from Egypt reported the presence of blaOXA−48

in 61% strains and co-occurrence of blaNDM and blaOXA−48

in 52% strains (16). The presence of multiple carbapenemases
and other resistance genes pose additional limitations to the
treatment protocols.

HYPERVIRULENT K. pneumoniae

(hvKP)—ANOTHER DIMENSION TO THE
PROBLEM

hvKP and cKP: We Beg to Differ
Recently, K. pneumoniae has gained a revised and serious
global attention due to the emergence of the hypervirulent
pathotype. Over the last few decades, the majority of hospital-
acquired infections reported globally were due to the classical
K. pneumoniae (cKP). However, since the mid-1980s, the
emergence of hypervirulent K. pneumoniae (hvKP) in the clinical
context poses a far greater challenge to the clinicians (90).
Although, both cKP and hvKP pathotypes have their own global
importance, the incidence of infections due to hvKP has been
reported at an escalating rate over the last three decades (91).
Unlike cKP, hvKP pathotypes are more virulent and have the
potential to cause several community-acquired invasive, life-
threatening, and unusual infections, such as pyogenic liver
abscess, lung abscess, meningitis, endophthalmitis, brain abscess,
and necrotizing fasciitis in otherwise healthy adults (92). Initially,
hvKP infections were reported primarily fromTaiwan and South-
East Asia, but several sporadic reports of hvKP have now been
observed in other Asian, European, and American countries
(25, 91, 93–98). Although hvKP cause community-acquired

diseases, some current reports argued that the infiltration of
these notorious strains is increasing in the healthcare settings
also (99–104). Infections due to hvKP are found to be more
complicated due to their ability to metastatically disseminate
to other organs or systems and subsequently cause multiple
sites of infection (90). This type of dissemination is common
for some selected Gram-positive pathogens, such as S. aureus,
but it is unusual for an enteric Gram-negative bacillus to
involve multiple sites of infection (105). In addition, unlike
cKP, hvKP pathotypes commonly possess a hypermucoviscous
phenotype, produce a robust capsule, synthesize several iron-
scavenging siderophore molecules, especially salmochelin and
aerobactin, and harbor several chromosomal and large virulence
plasmid-encoded factors (91, 106). Due to their enhanced
virulence, these K. pneumoniae are considered hypervirulent. An
overview of the differences between cKP and hvKP strains is
depicted in Table 2.

hvKP and cKP: Molecular Markers
Recently, the advancement of whole-genome sequencing (WGS)
in the clinical context has identified a set of important and unique
hypervirulent biomarkers which can accurately differentiate
hvKP from cKP, including several capsular serotypes (K1, K2, K5,
K20, K54, and K57), mucoviscosity-associated gene A (magA),
regulator of mucoid phenotype A (rmpA) genes, biosynthetic
genes responsible for the production of siderophore salmochelin
(iro cluster), aerobactin producing biosynthetic genes (iuc
cluster), virulence plasmid-encoded gene with unknown function
(peg-344), and the virulence plasmid-encoded heavy metal
resistance genes for tellurite (ter cluster) and silver (silS) (78, 91,
106). Due to presence of these factors, hvKP strains are more
resistant to macrophage- or neutrophil-mediated phagocytosis
& the complement-mediated bactericidal activity of human
serum, they exhibit enormous biofilm-forming capability, and
also display enhanced lethality in the in vivo mouse model
compared to cKP (107). In the following section, we discuss
briefly the several hvKP-specific biomarkers detected till date
which are responsible for the increased virulence and severe
clinical expression.

(a) Capsular Serotypes
Capsule is the most established virulence factor of K.
pneumoniae. Both cKP and hvKP possess chromosomally-
encoded capsular polysaccharide (K antigens) genes, known as
the cps cluster (108). Till date, around 78 capsular serotypes
(K1–K78) have been reported in K. pneumoniae (33). However,
majority of reports have shown the strong association of K1
and/or K2 serotypes with hvKP strains (109, 110). Recent
studies, especially from China, reported the occurrence of K2
serotypes in at least 70% and 42% of hvKP strains (93, 111) and
K1 in 24% (93). Why are the increased incidences of virulence
associated typically with K1 and K2 serotypes? There are several
explanations for this. One study suggested that strains with
K1 and/or K2 serotypes have better survival probably because
of the induction of slightly greater amount of reactive oxygen
species released by neutrophils than other serotypes (112). In
addition, several studies have argued that the strains of the K1
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TABLE 2 | Characteristic features of classical K. pneumoniae (cKP) and hypervirulent K. pneumoniae (hvKP) strains.

Parameter Characteristic(s) for pathotype

cKP hvKP

Primary site of acquisition Nosocomial Community acquireda

Population(s) at risk Immunocompromised individuals Often otherwise healthy individuals

Liver abscess Usually do not occurb Often occur in the absence of biliary disease

Ability of metastatic spread None Frequent

Number of sites of infection Usually single Often multiple

Unusual infections None Often encountered

Geographical distribution Worldwide Mostly Asia-Pacific Rim

Capsule type(s) K1-K78 Mostly hypercapsule K1 or K2c

Siderophores Mostly enterobactin and yersiniabactin All four siderophores but specifically

salmochelin and aerobactin

magA and c-rmpA Usually do not occur Frequently occur

Virulence plasmid-encoded factors (p-rmpA,

rmpA2, iroBCDN, and iucABCDiutA)

Usually do not occurd Predominantly occur

aRecently an escalating number of hvKP infections are emerging in the healthcare settings.
bcKP strains can also cause hepatic abscess but unlike hvKP, cKP mediated liver abscess occur in the presence of biliary disease.
cApart from the frequently encountered K1 or K2 serotype, several other capsular type, such as K5, K20, K54, and K57 have also been detected in hvKp strains.
dDuring the course of evolution, cKP strains are also increasingly reported to acquire hvKP virulence plasmid.

and K2 serotypes are significantly more resistant to phagocytosis
and subsequently intracellular killing by macrophages and
neutrophils than other serotypes (113, 114). Moreover, others
have suggested reduced uptake of K1 and K2 serotypes by the
innate immune cells probably due to the presence of a significant
amount of sialic acid on their surfaces, which maymimic the host
cell and allow them to easily evade the immune response (115).
Apart from the K1 and K2 serotypes, recent studies revealed the
occurrence of other serotypes, such as K5, K20, K54, and K57 in
hvKP strains causing various invasive infections (91). However,
significant reports of immune evasion are still scarce for these
capsular types.

(b) Major Players in Hypercapsule Production: rmpA

and magA
The capsule is found in both cKP and hvKP, but the hvKP
strains produce an increased amount of capsular polysaccharide
compared to that of cKP. This robust capsule synthesis in
hvKP strains is chiefly mediated by the rmpA and magA genes.
In hvKP strains, a total of three rmpA genes are generally
found, of which two are large virulence plasmid-encoded (p-
rmpA and p-rmpA2) and one is chromosomally-encoded (c-
rmpA) (116). Several reports suggested that the rmpA genes
along with the regulation of capsule synthesis A and B genes
(rcsAB) can induce the transcription of entire cps operon,
resulting in hypercapsule production (106). In separate studies,
Hsu et al. and Li et al. revealed that about 55–100% hvKP
strains express at least one copy of rmpA or rmpA2 (116, 117).
In the absence of rmpA or rmpA2, hypercapsule biosynthesis
can be triggered alone by the chromosomally-encoded magA
gene which was isolated from hypermucoviscous liver abscess-
causing K. pneumoniae (118, 119). Subsequent bioinformatics
and genetic experiments determined that magA is a K1-specific

factor and encodes a polymerase gene termed wzy in the cps
operon (118, 120, 121).

(c) The Iron Scavengers: Aerobactin and Salmochelin
Iron, a crucial and limiting metal, essential for bacterial
growth and plays a pivotal role in the progression of bacterial
infection, especially in the case of K. pneumoniae. However,
this essential metal is not readily available in the host during
the infection because of the non-specific immune response
exhibited by the host where the host efficiently sequesters this
metal ion (Fe3+) with several iron-binding molecules, such as
transferrin and lactoferrin, eventually restricting the growth
of many opportunistic pathogens (122). Therefore, to acquire
iron from such an iron-poor environment, K. pneumoniae
secrete several small proteins with high iron-scavenging ability,
called siderophores (123). Molecular epidemiological studies
have shown that hvKP strains produce all the siderophores
(enterobactin, yersiniabactin, salmochelin, and aerobactin)
compared to cKP which produce only enterobactin and
yersiniabactin (124). Apart from producing all siderophores,
hvKP strains are also capable of synthesizing quantitatively
more siderophores than cKP (125, 126). Among the four
siderophores, the activity of enterobactin and yersiniabactin is
greatly hindered by host molecule lipocalin-2 and transferrin,
respectively (127, 128). Therefore, K. pneumoniae with only
enterobactin and/or yersiniabactin are unlikely to cause systemic
infection in immunocompetent individuals (128). In contrast,
the functionality of both salmochelin and aerobactin cannot
be inhibited by these host proteins. Several studies have
shown that salmochelin is more prevalent in hvKP strains,
sometimes more than 90% of pyogenic liver abscess-causing
hvKP strains possess this scavenger (128, 129). Aerobactin,
a citrate-hydroxamate siderophore, is also rarely detected
in cKP (124). Studies revealed its presence in 93–100% of
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FIGURE 2 | Schematic diagram of the hvKP virulence plasmid pLVPK (Blue circle; 219,385 bp) (35). The respective CDS of the hypervirulent biomarkers are

demarcated in pink.

hvKP strains (130). Immense genome-based analysis in the
molecular epidemiologic studies confirmed that in most cases
iro gene cluster for salmochelin and iuc gene cluster for
aerobactin specifically reside on the large virulence plasmid
of hvKP (131).

(d) Plasmids That Matter: pLVPK
WGS analysis of initially identified hvKP strains revealed
the presence of the unique ∼220 kb large virulence plasmids
pK2044 (224,152bp) and pLVPK (219,385bp) (34, 35). All the
best described genetic markers which confer the hypervirulent
phenotype are located on these plasmids, including complete
biosynthetic gene cluster of aerobactin (iucABCDiutA) and
salmochelin (iroBCDN), regulators of hypercapsule production
(rmpA, rmpA2, and rcsA), resistance genes for tellurite
(terZABCDE and terWXY) and silver (silS) (Figure 2). Recently,
bioinformatics studies revealed that all the hvKP strains
possessed either pK2044-like or pLVPK-like plasmid. Struve et
al. showed that all 30 studied community-acquired liver abscess-
causing hvKP strains harbored pLVPK-like plasmids (131).
Similarly, another study revealed the presence of pK2044-like
plasmids in 94 hvKP strains (132). The lateral gene transfer in
bacteria is largely mediated by plasmids and as the hypervirulent
biomarkers mostly reside in the non-conjugative virulence

plasmids, it is quite likely that hvKP strains acquire drug-resistant
plasmids from the cKP strains due to their conjugative nature
and this molecular incidence is now increasingly evident in
recent studies.

(e) hvKP and Sequence Type 23 (ST23): In Search of

an Association
Several studies showed that the genes conferring hypervirulence
are widely distributed across diverse STs (133) but some selected
STs, such as ST23, ST65, and ST86 are found to be predominantly
associated with hvKP (134). Recently, core genome multi-locus
sequence typing (CG-MLST) and/orWGS revealed that strains of
clonal group 23 (CG23) are strongly associated with K1 capsular
type causing severe and invasive disease which occur in typical
hvKP infection (131). ST23 was frequently associated with hvKP
strains especially in the Asia-Pacific Rim. Studies from China and
South Korea show that majority of the hvKP strains belonging
to ST23 possessed K1 capsular type (134, 135). Recently, a study
from India in 2020 also described a case of community-acquired
neonatal septicemia caused by a carbapenem-resistant ST23
hvKP strain (78). Although the reasons behind the association of
the hvKP and/or K1 capsular type with ST23 are still uncertain,
it is hypothesized that the CG23 probably has a discrete genetic
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TABLE 3 | Epidemiology of some carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains.

Patient

population

Country Sequence

types

(STs)

Capsule

type(s)

Hypervirulent markers Associated

carbapenemase

Ambler

class

Year References

Neonates India ST2318 NDa rmpA, rmpA2, aerobactin,

and salmochelin

NAb,# NA 2016 (136)

Russia ND ND rmpA NA# NA 2017 (137)

Russia ND ND rmpA, and aerobactin NA# NA 2018 (5)

India ST23 K1 magA, rmpA, rmpA2,

iucABCDiutA, and

iroBCDEN

blaOXA−232 Class D 2020 (78)

Sudan ND K2 magA and rmpA blaNDM and

blaOXA−48−like

Class B and D 2020 (138)

India ST5235 ND rmpA and rmpA2 blaNDM and

blaOXA−48−like

Class B and D 2021 (139)

Adults China ST11,

ST25,

and

ST65

K2 and

non-typeable

rmpA, iucABCDiutA, and iro blaKPC−2 Class A 2015 (140)

China ST23

and

ST1797

K1 magA and rmpA blaKPC−2 Class A 2015 (141)

China ST11 K1 magA, rmpA, rmpA2, iro,

and

iucABCDiutA

blaKPC−2 Class A 2016 (142)

China Unknown K1 rmpA and iucABCDiutA blaKPC−2 Class A 2017 (143)

China ST11,

ST268,

ST65,

ST692,

and

ST595

K2, K20, and

non-typeable

rmpA and iucABCDiutA blaKPC−2 Class A 2017 (144)

China ST11 K47 iucABCDiutA and rmpA blaKPC−2 Class A 2017 (145)

China ST15 KL112c rmpA2 and iucABCDiutA blaOXA−232 Class D 2018 (146)

Iran ST23 K1 rmpA, magA, and

aerobactin

blaVIM−2 Class B 2018 (147)

China ST86 K2 rmpA, iucABCD, and

iroBCDN

blaNDM−1 and

blaKPC−2

Class A and B 2018 (148)

Canada ST86 K2 rmpA, rmpA2, iucABCD,

and iroBCDN

blaKPC−2 Class A 2019 (149)

Japan ST23 K1 rmpA, rmpA2 (with

frameshift), iucABCD, and

iroBCDN

blaIMP−6 Class B 2019 (150)

Singapore ST23,

ST65,

and

ST86

K1 and K2 rmpA, rmpA2, iuc, and iro blaKPC−2 Class A 2019 (151)

Singapore ST23,

ST65,

ST86,

ST420,

and

ST893

K1, K2, and

K20

rmpA, rmpA2, iuc, and iro blaKPC−2 Class A 2020 (152)

France ST86 K2 rmpA, rmpA2, iucABCDiutA,

and iroBCDEN

blaOXA−48 Class D 2020 (153)

China ST1764 K64 rmpA, rmpA2, and iroN blaSIM Class B 2020 (154)

aND, Not determined.
bNA, Not available.
#ESBL-producing hvKP strains.
cKL means K Locus: associated cps cluster type.

Frontiers in Medicine | www.frontiersin.org 12 June 2021 | Volume 8 | Article 634349

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Mukherjee et al. CRKP and hvKP Causing Neonatal-Sepsis

infrastructure that confers the hypervirulence. However, in-
depth research will be required to fulfill the existing knowledge
gaps.

THE NEXT GENERATION SUPER-BUG:
CARBAPENEM-RESISTANT hvKP
(CR-hvKP)

It is debatable whether the association of virulence and
antibiotic resistance is deleterious or helpful for the microbe
(90, 124). However, recent reports on K. pneumoniae that are
both antimicrobial-resistant and virulent have surely put an
end to this debate. K. pneumoniae are extremely capable of
receiving and incorporating DNA segments from other bacteria,
mostly via large plasmids (26). Carbapenem resistance genes,
as discussed earlier can easily spread across species via these
mobile genetic elements. Their presence in hvKP has challenged
the health system and the emerging CR-hvKP pathotypes are
now being considered as “the next generation super-bug.” The
epidemiological data of some CR-hvKP strains is given in Table 3
and the worldwide distribution of CR-hvKP strains is depicted in
Figure 3.

From the standpoint of the microbe, the convergence
of resistance and virulence is beneficial particularly under
antibiotic pressure. Exchange of genes can happen in two
ways, hvKP strains can acquire the antibiotic-resistant plasmids
from the XDR K. pneumoniae strains (155) or the XDR cKP
strains can acquire hvKP-specific virulence plasmids (145).
The first option seems more plausible given the fact that
majority of pLVPK-like plasmids are non-conjugative, lacking
the transfer (tra) genes (131, 134). On the other hand,
carbapenem resistance genes are primarily found on conjugative
plasmids. However, some recent in-depth investigations on

hvKP revealed that due to the immense antibiotic selection
pressure and an extraordinary ability of K. pneumoniae
to acquire highly antibiotic-resistance- and hypervirulence-
encoding genetic determinants, new hybrid and/or conjugative
plasmids with both carbapenem-resistant and hypervirulent
markers have emerged in the K. pneumoniae strains as a
result of convergent evolution. This molecular phenomenon has
eventually led to the emergence of new and perilous variants of
CR-hvKP strains (156, 157).

Since 2015, multiple epidemiological studies from China
showed the prevalence of KPC-2-producing CR-hvKP strains
in the clinical settings causing several infections in otherwise
healthy individuals, including UTI, pneumonia, septicemia,
bacteremia, abdominal infections, septic arthritis, catheter-
associated bacteremia, and ventilator-associated pneumonia
(140–142, 144). Majority of the reported blaKPC−2-harboring
CR-hvKP strains from China belonged to ST11. Although ST11
clone of K. pneumoniae is an internationally categorized high-
risk clone known to harbor blaKPC−2 as themajor carbapenemase
gene, these recent studies have confirmed its association with the
hypervirulence attributes.

Typical to hvKP, pLVPK-like virulence plasmid pVir-CR-
hvKP4 was identified. However, compared to the pLVPK, pVir-
CR-hvKP4 had a 41.231 bp deletion. The subsequent plasmid-
curing experiment suggested that this modified pLVPK-like
plasmid was responsible for enhanced virulence phenotype both
in vitro and in vivo (145). Although majority of the CR-
hvKP reports were initially detected with blaKPC−2, recently the
occurrence of other classes of carbapenemases (Class B -MBL-
type and Class D—OXA-48-like) have also been detected in
hvKP strains. For example, a recent study from China showed
the emergence of an ST86 CR-hvKP K2 strain that co-harbored
two different classes of clinically important carbapenemase-
producing genes blaNDM−1 and blaKPC−2. This strain was also

FIGURE 3 | Worldwide spread of CR-hvKP strains. Endemic spread of CR-hvKP strains were reported from the countries indicated in red while the blue colored

regions represent the sporadic occurrence of CR-hvKP strains.
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responsible for significant mouse lethality (148), refuting the fact
that association of resistance and virulence is deleterious for
the microbe.

hvKP/CR-hvKP AND THE NEWBORN

Till date, majority of the cases of hvKP and/or CR-hvKP
infections have been reported in adults and reports regarding
hvKP infection in cases of neonatal sepsis are just a handful
(Table 3). When resistance and virulence meet to cause infection
in a vulnerable population, the outcome is fatal, as was evident
from most neonatal studies (5, 137, 139). Previous studies
have concluded that the risk of development of severe forms
of neonatal infection can be associated with virulence factors
(5). In 2016, a study from India reported the occurrence
of an ESBL-producing hvKP ST2318 strain causing neonatal
sepsis. The strain was isolated from the blood of a very low-
birth-weight neonate suffering from hepatosplenomegaly with
severe thrombocytopenia, coagulopathy, and metabolic acidosis.
Cefoperazone-sulbactam and amikacin were administered as an
empirical treatment which was later changed to meropenem
with amikacin after receiving the clinical microbiology report.
The neonate was discharged after proper medical supervision.
Genome analysis revealed that the strain harbored rmpA, rmpA2,
and several siderophores, including aerobactin, enterobactin,
yersiniabactin, and salmochelin (136). Khaertynov et al. in 2017
reported another fatal case of pyogenic neonatal meningitis
caused by an ESBL-producing hvKP. The strain was isolated
from the blood and cerebrospinal fluid of a 12-day-old
neonate exhibiting several clinical symptoms, such as pallor,
loss of appetite, fever, seizures, and a bulging anterior
fontanelle. In addition, low Pediatric Glasgow Coma Scale
(PGCS) score indicated that the neonate suffered from severe
brain injury. Though the newborn was initially treated with
ampicillin and amikacin it was changed to meropenem and
later cefoperazone due to unsatisfactory clinical outcome
and isolation of ESBL-producing K. pneumoniae from the
infection sites. Apart from antibiotic treatment, IgM-enriched
intravenous immunoglobulin and infusion therapy were also
given to the neonate but the neonate succumbed to the
infection. Laboratory-based characterization revealed that the
strain exhibited hypermucoviscous phenotype and also harbored
rmpA gene (137). The following year another report from
Kazan, Russia revealed the occurrence of ESBL-producing
neonatal septicemic hvKP strains in the clinical settings with
fatal outcome, harboring rmpA and aerobactin biosynthetic
genes. In this study, two groups of neonates were registered,
infected by K. pneumoniae. The first group comprised of 10
neonates with culture-positive sepsis and the second group
consisted of neonates with UTI. All the 10 septicemic neonates
received a comprehensive treatment, including antibiotics,
intravenous immunoglobulins, and infusion therapy. However,
three neonates died despite the therapy, of which two suffered
from purulent meningitis and one from necrotizing enterocolitis.
The most grievous forms of sepsis in neonates, were correlated
with meningitis (5). The first report of CR-hvKP was in 2020

from our laboratory showing the occurrence of a unique
community-acquired neonatal septicemic case caused by a
hypermucoviscous CR-hvKP ST23 K1 strain. The neonate was
low-birth-weight, delivered at home in a rural area and was
given cowmilk since birth. During admission, the baby displayed
several clinical signs and symptoms of sepsis. As an empirical
treatment, piperacillin/tazobactam and netilmicin were given to
the neonate. The baby was hospitalized for 22 days before taking
a high-risk discharge. The strain displayed all hvKP-associated
features, including hypermucoviscous phenotype, magA, rmpA,
rmpA2, rcsAB, iroBCDEN, and iucABCDiutA. In addition, the
strain also harbored blaOXA−232 as the candidate carbapenemase
gene. Molecular typing and WGS analysis revealed that the
studied strain belonged to an internationally high-risk clone,
ST23 and possessed a pLVPK-like virulence plasmid sequence
in the studied genome. Moreover, comparative genomic analysis
with the other hvKP ST23 reported genomes showed >99.5%
of inter-genomic resemblance (78). The virulence determinants
such as magA, rmpA, rmpA2, iroN, iucA, and iutA were
not transmitted along with the carbapenem resistance gene,
blaOXA−232, in conjugation experiments. However, the possibility
of such transmission is worrisome. The same year another
study from Khartoum, Sudan revealed that about 16.7% CR-
hvKP strains were recovered from the blood of septicemic
neonates and adults. Molecular characterization suggested that
among the recovered CR-hvKP strains, eight were positive for
blaOXA−48−like gene and two for blaNDM. Moreover, the strains
belonged to K2 capsular serotype and also harbored rmpA
and magA (138). In 2021, a study from India showed the
occurrence of nine XDR hvKP ST5235 strains causing sepsis
in neonates. All the neonates in this study were empirically
treated with piperacillin/tazobactam and amikacin followed
by imipenem/meropenem and vancomycin. However, 100%
neonatal mortality was recorded in this study even after the
treatment with polymyxin B. Molecular characterization showed
that the strains harbored rmpA/rmpA2 in various combinations.
Although all strains showed resistance against carbapenems in
phenotypic tests, blaOXA−48−like gene and blaNDM were detected
only in three strains (139).

Clearly, more andmore reports of hvKP and CR-hvKP in cases
of neonatal sepsis are being published. Clinical laboratories do
not evaluate K. pneumoniae on the basis of their hypervirulent
features and thus such strains are underreported. In neonates, the
combined effect of an immature immune system, use of several
invasive devices, the involvement of extensively drug-resistant
cKP, and the emergence of hvKP/CR-hvKP is worrisome.
Comprehensive analysis of cKP and hvKP, their differences,
and also the distinguishing biomarkers for hvKP will probably
help the clinicians in future to take a more strain-specific
therapeutic approach.

THE POSSIBLE ACQUISITION OF cKP AND
hvKP IN NEONATES

Just like the other members of the Enterobacteriaceae family,
K. pneumoniae is also found in the normal human microbiota

Frontiers in Medicine | www.frontiersin.org 14 June 2021 | Volume 8 | Article 634349

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Mukherjee et al. CRKP and hvKP Causing Neonatal-Sepsis

(158). Although the acquisition of K. pneumoniae appears to
be obligatory for the infection, this scenario is not obvious
always (159). The time of pathogenic exposure, bacterial
inoculum size, immune status of the individual, and the
virulence potential of the causative microorganism collectively
manifest the clinical expression of an infection (3). At birth,
the neonates do not possess their endogenous microbiota which
is naturally acquired through the perinatal transfer of the
maternal flora and from environmental sources. Due to the
lack of an established microbiota, immaturely developed gut
barrier, and the high permeability of the mucosa in the GI
tract, neonates get infected easily, particularly low-birth-weight
and premature neonates requiring prolonged hospitalization
(160). The probable modes of infiltration of K. pneumoniae in
the neonates are largely accomplished by in-utero acquisition,
acquisition from maternal flora, and postnatal acquisition from
the hospital or community (3).

(a) K. pneumoniae Acquisition From
Maternal Flora
In-utero infection in neonatal septicemic cases is largely
reported to be a result of chorioamnionitis (161). This is
an acute inflammation of fetal membranes, probably due to
the bacterial infiltration and this clinical condition is often
found to be caused by two specific genital mycoplasmas, such
as Ureaplasma parvum and Ureaplasma urealyticum (3). The
vaginal microenvironment also provides a suitable ground for
the colonization of pathogenic bacteria. Ascending movement
of these microorganisms followed by the premature rupture of
amniotic membrane results in the contamination of amniotic
fluid. The inhalation or swallowing of the infected amniotic
fluid by the neonate can subsequently lead to the colonization
of pathogenic K. pneumoniae in their gut which can lead to
intrapartum sepsis (162–164). However, reports regarding in-
utero infection due to K. pneumoniae are extremely scarce. Two
exclusive studies confirmed the occurrence of K. pneumoniae
in intrauterine infection. In the first study in 2005, Sheikh
et al. reported a unique case of acute chorioamnionitis and
acute villitis due to K. pneumoniae infection in a 40-year-
old woman at 18 weeks of gestation (165). Torabi et al. also
reported a case of severe chorioamnionitis with umbilical cord
and chorionic plate vasculitis due to K. pneumoniae in a
woman who had suffered from fetal expiration at 20 weeks
of gestation (166).

Acquisition can also frequently happen during the process of
vaginal delivery, the neonatesmight get infected by the pathogens
residing in the birth canal (167). Besides, the neonates can also
acquire maternal flora through the contaminated hands, from the
skin during the kangaroo care, and/or from the infected breast
milk. Recent studies have revealed the incidence of acquisition
of ESBL- or carbapenemase-producing K. pneumoniae from
maternal flora to the neonates. For example, a study from Italy
in 2017, reported a case of mother to child transmission of KPC-
3-producing CRKP at birth (168). In 2018, Herindrainy et al.
reported that the acquisition of about 24% (n = 20) of ESBL-
producing K. pneumoniae detected in the neonates were from the
maternal gut flora (169).

(b) Nosocomial Acquisition of
K. pneumoniae
Till date, the majority of neonatal septicemic cases from LMICs
are reported to be caused by hospital-associated drug-resistant
classical K. pneumoniae strains which we have already discussed
earlier. In several studies, we also have noticed the prevalence of
hospital-acquired K. pneumoniae and/or CRKP infections in the
neonates. The MDR or XDR nature of the K. pneumoniae strains
offer them an immanent selective advantage by which they can
easily persist in the flora of hospitalized patients as well as in the
nosocomial environment (170). In a study from India, Das et al.
revealed that among the studied bacterial strains, K. pneumoniae
was detected as the predominant microorganism colonizing the
neonatal gut. Neonates with longer stay in the NICU and those
with prolonged feeding through an enteral tube were predisposed
toward such colonization. Moreover, molecular typing showed
that about 50% of the K. pneumoniae strains isolated from the
blood were genotypically identical with their gut counterparts,
reflecting the possible association between gut colonization and
neonatal sepsis (162).

(c) Acquisition of K. pneumoniae From the
Community
Till date, the majority of community-acquired K. pneumoniae
have been reported to cause infections in healthy adult
individuals. But the reports regarding community-acquired K.
pneumoniae infections in neonates are very limited. In a study,
Waters et al. showed that about 11.6% of K. pneumoniae strains
caused community-acquired neonatal sepsis in the LMICs (171).
In another study, Khatri et al. reported a case of community-
acquired pyelonephritis caused by a KPC-2-producing K.
pneumoniae (172). Recently, in a study we reported a unique case
of CR-hvKP, causing sepsis in a neonate who was delivered at
home and was given cow milk after birth (also discussed earlier).
In that study, we hypothesized that the consumption of cow milk
after birth was probably a cause of community-acquired hvKP
infection (78). Due to various factors like low female literacy
rate, unavailability of clinicians and other healthcare workers, the
inadequate number of hospitals and/or well-equipped healthcare
facilities, improper transport system, and most importantly
inequality in the society, some of the neonates in the LMICs
are still delivered either at home or at resource-poor primary
care facilities where they might acquire infections from the
environmental sources.

DETECTION OF CRKP AND hvKP: SEEK
AND YOU SHALL FIND

The initial detection of carbapenemase-producing organisms in
a lab is carried out by the trusted disk diffusion method which
uses a carbapenem disk placed on a lawn of sample organism
(173, 174). If there is a zone of inhibition, the diameter is
measured and according to the cut-off mark delineated by CLSI
(175) or EUCAST (176), the organism is declared resistant,
or intermediate, or susceptible. Automated machines such as
VITEK R© 2 from bioMérieux and PhoenixTM from BD are also
frequently used in setups that can afford them. Phenotypic
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detection methods (though some are still not cost-effective) may
be considered in resource-poor settings. A suitable test should
be chosen based upon the sensitivity, specificity, turn-around
time, and most importantly, cost of the test. Some phenotypic
methods suitable for detection of carbapenemase-producing
organisms are presented here in brief, exhaustive reading on
these methods are available elsewhere (177). For easy detection
of KPC and MBLs, combined disk test was developed. This test
uses a disk of meropenem and another disk of a meropenem
supplemented with an inhibitor (EDTA/ aminophenyl boronic
acid/ dipicholinic acid). If the difference between the zone
of inhibition of the two disks is >5mm, a positive result is
indicated (178). These tests are now commercially available
(179, 180). mCIM uses a simple method and has high sensitivity
and specificity. In this test, a meropenem disk is incubated
with 1 µl loopful bacterial culture in Tryptic soy broth for
4 h. After that the disk is placed on a plate spread with a
susceptible isolate. If the initial sample is carbapenem-producer
then the disk is inactivated and zone of inhibition will be absent
on the plate. Both these tests yield results after an overnight
incubation (181). On the other hand, CarbaNP test uses the
property of a carbapenemase-producer to hydrolyze imipenem
within 2 h (182). This hydrolysis produces an acid which lowers
the pH and triggers phenol red to change its color from red
to yellow. There are several variants of this test. These tests
detect all carbapenemases but has low sensitivity for OXA-48-
like carbapenemases. The modified CarbaNP test uses a different
buffer (0.02% cetyltrimethylammonium bromide lysis buffer) of
higher (pH 7.8 instead of pH 7.5) and has higher sensitivity than
CarbaNP test. For K. pneumoniae the modified test is beneficial
as mucoid cells tend to give false negative results in the original
test. To differentiate between classes of carbapenemase, CarbaNP
test II is used which discriminates based on the use of inhibitors
tazobactam (for KPC) or EDTA (for MBLs) (177).

Colorimetric methods to detect carbapenemases directly from
blood without blood culture are cost-effective and less time
consuming (3–4 h). A study evaluated two variations of CarbaNP,
CarbaNPT-direct which uses Triton X-100 as enzymatic extractor
and Blue-carba which uses bromothymol blue instead of phenol
red, for detection of carbapenemases directly from blood samples
(183). The study reported high sensitivity for MBLs and
KPC by colorimetric assays but less sensitivity for detection
of GES and OXA-48 carbapenemases. A new method with
increased sensitivity is the CarbaLux test which uses a fluorescent
carbapenem substrate and substrate with cloxacillin to detect not
only all carbapenems but also carbapenem-hydrolyzing AmpC
enzymes from a bacterial culture (184). Another highly sensitive
and specific method is lateral flow immunoassay which detects
widely spread carbapenemases NDM, KPC, OXA-48-like, IMP,
VIM on a single strip within 15min from a bacterial culture
(185, 186). These require minimal infrastructure.

Several phenotypic tests and commercial kits are available
for the detection of CRKP strains (179, 180), such tests
and/or kits are yet unavailable for the hvKP strains. The
clinical microbiology laboratories are thus, not equipped to
distinguish cKP from hvKP during routine diagnosis. Since
the hvKP strains are often found to harbor hypercapsule, the

hypermucoviscosity appearance of the colonies on the agar plate
can be determined by a string test in which a viscous string is
generated (>5mm) when a colony is stretched by an inoculation
loop (90). However, the strain discrimination based on only
the hypermucoviscous appearance of the colonies and/or the
positive string test can be misleading because studies have argued
that hypermucoviscosity and hypervirulence are two different
phenomena (91, 187). It is noteworthy that several rmpA and/or
rmpA2-positive non-hypermucoviscous strains and also rmpA
and/or rmpA2-negative hypermucoviscous strains were detected
in causing invasive syndrome (103, 188, 189). hvKP strains
produce quantitatively more siderophores than cKP, and the
siderophore assay can be an option for detection. However,
as of date, the conclusive discrimination of hvKP is carried
out by genotypic methods, such as via specifically amplifying
several hvKP-associated genes (magA, rmpA, rmpA2, iroB, iroN,
iucA, and iutA) using polymerase chain reaction (PCR). These
hypervirulent biomarkers hold the promise of a sensitive and
specific diagnostic test in future. Since, the methodology is
largely genotype-based, it is restricted to the research laboratories
and may not be readily available in the healthcare settings of
LMICs. Research is on-going for the development of a cost-
effective commercial test which will not only help the clinical
laboratories but can also be used in surveillance and research
studies (189). In some resource-poor settings where the basic
blood culture facilities are still unavailable or not properly
standardized, the detection of either CRKP or hvKP is far
from sight. Moreover, the major hindrance in detecting hvKP
is probably the lack of awareness of such strains and the need
to detect them.

TREATMENT: IS THERE A SILVER LINING?

Treatment of neonatal sepsis is a great challenge, the signs of
the disease are non-specific, the pathogens are numerous and
drug-resistant, the diagnosis has limitations and the patient
is vulnerable. Antibiotics remain the primary treatment with
supportive respiratory and circulatory treatments along with
treatment for metabolic derangements. In contrast to the well-
established supportive treatments, the protocols for antimicrobial
treatments are often found to be inadequate and region-specific.
The choice of antibiotics largely depends on the etiology of the
prevailing pathogens, their antimicrobial susceptibility profiles,
the age of onset of sepsis, and the microbiology laboratory
support available (3). The protocol is often specific for a given
unit and greatly varies between and within countries. In this
review, we discuss the limitations of the currently available
antimicrobial therapy particularly in the LMICs in the current
situation of drug resistance.

EMPIRICAL ANTIBIOTIC THERAPY: ARE
THE GUIDELINES STILL ADEQUATE FOR
NEONATES?

In general, the treatment of neonatal sepsis can be broadly
divided into suspected or empirical therapy and known
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or definitive therapy. In clinical microbiology, it is always
recommended to obtain the blood cultures for ascertaining
bacterial sepsis before the initiation of antimicrobial therapy.
However, culture results often require at least 48–72 h to be
reported. Considering the non-specific clinical manifestations of
neonatal sepsis, the initial antimicrobial therapy should not be
unnecessarily delayed for the culture report in case of severely
ill and high-risk neonates. In most cases the treatment should
start within 1 h of decision to treat (190). This initial antibiotic
therapy which is implemented before obtaining the blood
culture report is defined as the empirical therapy. Empirical
antibiotic therapy should be guided by the prevalent spectrum
of pathogenic bacterial strains and their resistance profiles
commonly detected in the given NICU or in the community
settings. Microbiology support is varied and insufficient in
resource-poor settings and treatment is largely empirical in
such situations.

Antibiotic resistance has limited the therapeutic options in
neonates and this problem is compounded in resource-limited
heath infrastructure in LMICs. CRKP strains in neonatal units
have challenged the healthcare settings, as these strains not
only produce broad-spectrum carbapenemases but also harbor
a repertoire of other plasmid-mediated resistance determinants
that confer resistance to almost all clinically important
antimicrobial classes, including third- and/or fourth-generation
cephalosporins, cephamycins, aztreonam, aminoglycosides, and
fluoroquinolones (67). Under these circumstances, the WHO
treatment guidelines for neonates were found to be ineffective for
the LMICs.

In response to the antibiotic resistance crisis, recently, the
WHO has revised the treatment guidelines and launched a global
action plan on antimicrobial resistance. The aim of this global
campaign is to reduce the spread of AMR through optimizing
the use of antibiotics, and also to reduce the adverse events
and overall costs. The WHO Essential Medicine List (EML)
Working Group adopted a tool, AWaRe. This tool classifies
the antibiotics into three groups: Access, Watch, and Reserve
(191). The Access group generally includes narrow-spectrum
antimicrobials against a wide range of commonly encountered
susceptible pathogens. The WHO EML enlisted 19 antibiotics
recommended as first or second choice of empiric treatment
options for clinical infections. These antibiotics are affordable,
greatly assured, and are generally available at all times. The
Watch group contains broader spectrum antimicrobial classes
that have higher resistance potential and includes most of the
highest priority agents among critically important antimicrobials.
Among the 110 Watch group antibiotics, WHO EML enlisted 11
antibiotics as first or second choice of empiric treatment options.
However, these antibiotics are recommended only for specific
and limited indications. In addition, the Reserve group consists
of antibiotics and antimicrobial classes for the treatment of
MDR infections. Antibiotics in this group should be considered
as “last resort” and also should be highly specific for patients
and settings when all other antibiotics have failed. Till date, 22
antimicrobials have been classified as reserve group. In the recent
global action plan, WHO enlisted seven reserve group antibiotics
in the EML (191).

For both early and late onset neonatal sepsis, the most
commonly recommended and used antibiotics, as per the
WHO guidelines, is a β-lactam antibiotic (most commonly
ampicillin) combined with an aminoglycoside (most commonly
gentamicin) (191). Recently, in 2019, the use of AwaRe group of
antibiotics was assessed in a pediatric survey across 56 countries
(192). The study revealed that among the Access group of
antibiotics, gentamicin and ampicillin were commonly given
to the septicemic neonates in most of the countries, including
Africa, America, Eastern Mediterranean, Europe, and South-East
Asia. However, in the Western Pacific region, amoxicillin and β-
lactamase inhibitor were used as empiric treatment for neonates.
In addition, the study also showed that among the Watch
group of antibiotics, globally meropenem and/or cefotaxime
were prescribed to the neonates suffering from bacterial sepsis.
Moreover, in South-East Asia, among the Reserve group of
antibiotics, colistin was given to the critically ill neonates (192).

Due to the emergence and spread of CRKP strains in
the healthcare settings, the treatment options for neonates
are narrowing. Added to this, are the challenges in sepsis
diagnosis. This alarming scenario demands new antimicrobials
or additional alternatives for the treatment of CRKP-infected
septicemic neonates. Although currently there is a scarcity of new
antimicrobials globally, combination therapy is an alternative.
Such therapies can expand the spectrum of antibiotic coverage
and synergism between the antibiotics with enhanced killing
effect. In addition, new alternatives have also been suggested
for CRKP infections though all may not be suitable for
neonates. For example, avibactam (a non-β-lactam β-lactamase
inhibitor) showed high effectivity against KPC- and OXA-48-
producing CRKP strains when combined with ceftazidime (193).
Similarly, other studies revealed that vaborbactam (a boronic
acid derivative) when combined with meropenem can exert
bactericidal activity against the KPC-2-producing CRKP strains
(194). Current studies have also argued that plazomicin (a
novel semisynthetic aminoglycoside) showed impressive activity
against most of the CRKP strains (195). The use of polymyxins
(including both colistin and polymyxin B) and fosfomycin have
also been documented in several case studies for the treatment of
CRKP infections in the neonates (196, 197). In the current AwaRe
classification, WHO has enlisted these antibiotics in the reserve
group for which significant clinical data are still missing (191).

In response to the critical priority pathogens, recently WHO
has published a third review of the clinical antibacterial pipeline
where they enlisted a total of 8 new antibiotics that gained
market authorization since July 2017 (198). Of them, two β-
lactam and β-lactamase inhibitor combinations (vaborbactam +

meropenem and relebactam + imipenem), one aminoglycoside
(plazomicin), and one tetracycline (eravacycline) were found
to be active against the CRE. Although all of these newly
launched antibiotics are active against the Class A and Class
D carbapenemases but found ineffective against the MBLs.
To combat the MBL-producing CRE, WHO has also enlisted
several other antimicrobial agents that are now in clinical trials
(Phase 1–3), such as cefiderocol (Phase 3), taniborbactam +

cefepime (Phase 3), BOS-288 (Phase 2), zidebactam + cefepime
(Phase 1), and nacubactam + meropenem (Phase 1) (198).
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All of these currently developed antibiotics and/or antibiotic
combinations are active against the CRE but the clinical data
regarding their effectiveness against neonatal septicemia are yet
to come. Although several clinical trials are ongoing for neonatal
sepsis, additional large-scale clinical trials, strict infection
control measures, and antimicrobial stewardship programmes
should be undertaken in future to treat infections caused
by drug-resistant and virulent K. pneumoniae to arrest their
further dissemination.

ALTERNATIVE COMBAT APPROACHES

The gut of a term neonate having normal-body-weight is mainly
comprised of Bifidobacterium spp., Bacteroides, Clostridium spp.
and Lactobacillus spp. (in minor proportion) (160, 199, 200) and
serves key role in providing nutrients, providing defense against
gut colonization by pathogens, and development of immunity
of the neonate (160). Whereas, in preterm and/or low-birth-
weight neonates, intestinal flora lacks colonization by the above
mentioned favorable microorganisms (199). Preterm and/or low-
birth-weight neonates are often colonized by Gram-negative
bacilli, some of which can be opportunistic pathogens and may
trigger an inflammatory response which plays the key role in the
initiation of the necrotizing enterocolitis and sepsis (160, 200). If
the neonates are given supplements of probiotics (consisting of
bacteria which forms the healthy gut flora of term neonates) with
human breast milk, it helps in reduction of inflammation (200)
as well as translocation of pathogenic bacteria (160). The use of
Bifidobacterium spp. and Lactobacillus spp, in different probiotic
doses has shown significant decrease in necrotizing enterocolitis
and neonatal death (199–201). Despite pre-existing skepticism
that probiotics may increase sepsis instead of decreasing it (200,
202), systemic reviews and meta analyses of randomized control
trials of large sample sizes have shown that probiotics indeed
play a beneficial role in decreasing the rate of LOS in preterm
low-birth-weight neonates (203–205). The bacterial strains used
in the randomized control trials were mainly Bifidobacterium
bifidum, B. lactis, B. breve, B. infantis, Lactobacillus acidophilus, L.
rhamnosus, L. reuteri. Streptococcus thermophilus in varied doses
(203). As probiotics not only provide a low cost, non-invasive,
safer way to replenish the preterm neonatal gut with natural gut
flora of a healthy term neonate, but also provides defense against
LOS, it can be considered for routine use in LMICs where the
load of LOS is overwhelming.

Preterm neonates of <32 weeks of gestational age lack
maternal transplacental immunoglobulin; transfer of which,
from mother to fetus, occurs only after 32 weeks of gestation. In
the search for suitable alternative therapy for sepsis in preterm
neonates, studies were conducted by administering intravenous
immunoglobulin, granulocytes, granulocyte colony stimulating
factor and granulocyte-macrophage colony stimulating factor,
and pentoxifylline to neonates. The results were not promising
except for pentoxifylline which caused decrease in all-cause
mortality (206, 207). However, an monoclonal antibody (mAb)—
Pagibaximab has shown some positive result (208). Recently,
broadly reactive mAbs were raised against the capsular antigens

of CRKP and those mAbs showed positive result in efficient
killing of K. pneumoniae in mice model (209). Although, the
efficacy of mAbs can be properly assessed only after clinical trials
on neonates, but it shows some ray of hope in an otherwise
grim situation.

CONCLUSION

Antibiotic resistance in Gram-negative bacteria has clearly
exposed that the World Health Organization (WHO) guidelines
for the management of neonatal sepsis, which is currently
ampicillin plus gentamicin, is in dire need of modification. The
major burden of neonatal sepsis is borne by the LMICs where
antibiotic resistance is high and microbiology laboratory support
is inadequate. The number of documented neonatal infections
caused by CRKP and hvKP are just the tip of the iceberg.
Most cases are not recorded as the microbiology laboratories
in resource-limited countries lack infrastructure and capability.
This is probably likelier for hvKP, as these strains are not
specifically detected in clinical microbiology laboratories. This
lack of information is thus translated into treatment protocols.
Studies have shown that the most severe forms of neonatal sepsis
with an unfavorable outcome were due to virulent strains of K.
pneumoniae (5). The clinician is however unaware of the hvKP
phenotype. Some carbapenem resistance genes such as blaKPC
and blaOXA−48 are also difficult to recognize by routine disc
diffusion tests. The presence of these genes may not be detectable
by such tests as their capability to hydrolyze carbapenems
are variable.

A recurring premise about carbapenemases is their ability
to hydrolyze most β-lactam antibiotics, emergence of variants
and their promiscuous nature. Plasmids are numerous and
have facilitated intra and interspecies transmission of these
genes particularly under antibiotic pressure. Globalization has
encouraged their spread and most genes have within a few years
of identification crossed boundaries and invaded new terrains.
Clonal spread is uncommon but not unknown. The evolution
of variants of enzymes that are more efficient or have better
stability have also made them difficult to contain. Plasmids
carrying carbapenem-resistant genes also carry other resistant
genes in a bid to make a panel of antibiotics ineffective. With new
carbapenem resistance genes being identified and new variants
evolving, the problem of CRKP and hvKP that we recognize
presently is incomplete.

Another overlooked aspect of K. pneumoniae is that it
commonly resides in the human gut. The rate of colonization
of K. pneumoniae increases drastically in hospitalized patients
with invasive devices, antibiotic exposure, and prolonged stay.
Needless to say, that this would also happen with premature,
low-birth-weight neonates with a pristine gut. K. pneumoniae
that colonize the gut in the hospital are resistant to antibiotics
and the gut provides an environment apt for the exchange of
resistance genes. Studies have shown that such exchange of
resistance genes frequently happen in the gut (210). Further,
bacteria from the gut can translocate and cause sepsis in neonates.
This can happen in neonates who have an immature immune
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system, lower levels of mucus and gastric acid production. The
bacteria evade the gut barrier and cause sepsis. Our study on
the neonatal flora showed that K. pneumoniae was not only
the predominant organism that colonized the neonatal gut, but
also the most common organism isolated from the neonatal
blood specimens (162). The exchange of carbapenem resistance
genes in the gut and subsequent translocation can further
complicate the situation.

It is difficult to change things overnight and the economic
implications of these changes may also be a constraint on health
systems that are poorly funded. The COVID-19 situation has
further exposed the fragility of health systems around the world
and newborns have also been affected. Measures that can reduce
infection rates can also reduce CRKP and hvKP. These include
surveillance systems to recognize changes in etiology and drug
resistance profile, improved laboratories for better and timely
detection of pathogenic strains, setting empirical treatment
guidelines based on the profiles and proper education of mothers
and healthcare workers regarding sanitation. We have come a
long way from the days when we understood microbes through
the lens of a microscope.We now seem to have an unprecedented
power over them by being able to understand their genetic make-
up to the last nucleotide. Whole genome sequencing has opened

up newer avenues to understand the bacterial genomes. This
enormous amount of information generated can be honed to
create new cures and products. The challenge is big but there is
light at the end of the tunnel.
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