MINISTRY OF HEALTH OF UKRAINE BOGOMOLETS NATIONAL MEDICAL UNIVERSITY

Department of Medical and General Chemistry

GENERAL AND INORGANIC CHEMISTRY

V. Kalibabchuk, G. Zaitseva, Ya. Pushkarova, V. Slipchuk

Student notebook for experimental chemistry

(Module 1 «General Chemistry»)

Student _____

Group _____

Kyiv 2017

Approved by Methodical Commission of Physicochemical Disciplines of Bogomolets National Medical University, Record of Proceedings № 1 dated 05.09.2016

This Student Notebook for Experimental Chemistry allows you to keep a written record or report of the mandatory laboratory and practical works that you will carry out as part of the Inorganic Chemistry course. The Student Laboratory Notebook includes laboratory and practical works and also questions in all basic topics in Inorganic Chemistry. Chemistry is a practical subject, and, by developing your practical skills in the laboratory, you will increase your understanding and appreciation of chemistry. The notebook is for first year foreign students of Pharmaceutical Faculty. *Have fun,enjoy your laboratory / practical work, and best of luck with it!*

CONTENTS

N	Торіс	Page
	Laboratory Safety Rules	3
	General purpose glassware	4
	Semantic Module 1 «Atomic Structure. Periodic Law»	
1	Atomic Theory. Basic Laws of Chemistry	6
2	Atomic Structure. Electron Arrangements. Periodic Law	7
	Semantic Module 2 «Molecular Structure and Chemical Bonding»	
3	Chemical Bond. Molecular Structure, Valence Bond. Method	10
	Molecular Orbital Theory	
4	Classification of Inorganic Compounds. Oxides	11
5	Classification of Inorganic Compounds. Acids and Bases	15
6	Classification of Inorganic Compounds. Salts, Complex Salts.	18
	Biorole, Toxicity and Application of Inorganic Compounds in	
	Medicine and Pharmacy	
7	Complex Compounds	22
8	Redox Reactions	25
	Semantic Module 3 «Theoretical Bases of Chemical Processes»	
9	Thermodynamic and Kinetic Regularities of Chemical Processes.	27
	Chemical Equilibrium.	
	Semantic Module 4 «Physical-Chemical Properties of Solutions»	
10	Solutions. Methods of Expressing Concentration of Solutions.	34
	Nonelectrolytes and Electrolytes Solutions. Equilibrium in Solutions	
	of Weak Electrolytes	
11	Ionic Equilibrium. Stability of Complex Ions, Solubility Product	36
	Constant	
12	Ionic Product of Water, pH. Hydrolysis of Salts	38

Take care of yourself. Acquire good lab habits from the word go.

- ✓ Report all accidents, injuries, and breakage of glass or equipment to teacher immediately.
- \checkmark Lab coats should be worn in laboratory.
- ✓ Long hair (chin-length or longer) must be tied back to avoid catching fire.
- ✓ Work quietly know what you are doing by reading the assigned experiment before you start to work. Pay close attention to any cautions described in the laboratory exercises.
- \checkmark Do not taste or smell chemicals.
- \checkmark Never return chemicals to their bottles.
- ✓ Never point a test tube being heated at another student or yourself. Never look into a test tube while you are heating it.
- ✓ Unauthorized experiments or procedures **must not** be attempted.
- ✓ Leave your work station clean and in good order before leaving the laboratory.
- \checkmark Do not leave your assigned laboratory station without permission of the teacher.
- ✓ Follow all instructions given by your teacher.
- \checkmark Do not mouth pipette.
- \checkmark Do not waste chemicals; do not take more than what is required
- \checkmark Wash your hands before leaving the lab.
- \checkmark Absolutely no noise or disruptive behavior in the lab. No fooling around.
- ✓ No eating or drinking in the lab at any time!

Exothermic Dangers

When you make up a solution using a concentrated or solid strong acid or base, always gradually add the acid or base to the water, not vice versa. If you add water to the strong acid or base, the solution may boil almost instantly, ejecting the chemical forcefully from the container.

GENERAL PURPOSE GLASSWARE

Be careful with all laboratory glassware!

Test Tubes

For most people, the test tube is the one piece of equipment that defines a chemistry lab, and rightly so. Test tubes are used so often and for so many purposes that it's hard to imagine a chemistry lab without them. Most of the time, you'll use test tubes to mix solutions, heat samples, observe reactions, and perform other similar tasks.

Beakers

Beakers are among the most commonly used items of laboratory glassware; they're used when test tubes aren't large enough. Beakers are flatbottomed, cylindrical containers, usually equipped with a pouring spout, and are used for routine mixing, measuring, heating, and boiling of liquids.

Volumetric Flasks

A volumetric flask is used to make up a precise volume of solution. It has one graduation line that indicates the nominal volume.

Erlenmeyer Flasks (conical flasks)

An Erlenmeyer flask, has a wide, flat base and a conical cross section, which allows it to sit on the lab bench without risk of tipping. We frequently use an Erlenmeyer flask, also called a *conical flask*, for a task that requires a vessel larger than a test tube. Flasks are better for swirling or heating solutions, when the container must be sealed or is part of an apparatus, or when

B100m

the contents are volatile.

Graduated Cylinders

A graduated cylinder is a tall, slender cylinder with numerous graduation lines from near the bottom to near the top. You use a graduated cylinder to measure liquids with moderate to moderately high accuracy.

Pipettes

A graduated pipette (also spelled pipet) is a slender glass tube that is used to measure and dispense liquids with a very high degree of accuracy and precision. Standard volumetric pipettes have only one graduation line that corresponds to the nominal capacity of the instrument, and so can be used only to measure that specific quantity.

Burettes

A burette (also spelled buret) is used to dispense controlled small amounts of a liquid with great precision. Burettes are used to perform titrations for quantitative analyses, determining accurate concentrations of stock solutions, and so on.

Semantic Module 1 «Atomic Structure. Periodic Law»

Topic 1 «Atomic Theory. Basic Laws of Chemistry»

Practical work N 1 «Basic concepts and laws of chemistry»

1.1. Use the basic concepts and laws of chemistry to complete Table 1.

Table 1

Substance	Amount of substance <i>n</i> , mole	Mass of gas <i>m</i> , g	Volume of gas (n.c.) V, L	Number of gas molecules
Cl ₂	0,1			
CO ₂		22		
NO ₂			2,8	
СО	0,2			
H_2S				$9,03 \cdot 10^{23}$
PH ₃		3,4		

1.2. Calculate the relative densities of gases (D_{x_1/x_2}) to complete Table 2.

Table 2

X.		$D_{x_{1}/x_{2}}, v$	where x_2	
	H ₂	O ₂	N ₂	Air
F ₂				
СО				
SO ₂				
NH ₃				

Date

Teacher's signature

Topic 2 «Atomic Structure. Electron Arrangements. Periodic Law»

Practical work N 2 «Electronic structure of atom»

2.1. Complete Table 3.

Table 3

Atom or	Electronic	$\sum m$		Electronic	$\sum m$
ion	configuration of	$\sum m_s$	Atom or ion	configuration	$\sum m_s$
	atom			of atom	
	[Ne]3s ¹			$[Ne]3s^2$	
S^{2-}			Cd^{2+}		
	$[Ar]3d^54s^1$			$[Ar]3d^54s^2$	
Cr ³⁺			Br		
	$[Kr]4d^55s^1$			[Kr]5s ¹	
Si			As		

Experiment N 1

«Influence of electronic structure of atoms and ions on chemical properties of elements»

Experiment 1.1.

N⁰		Performing the experiment				
1	To each of	To each of three clean test tubes add 3-4 mL of copper (II) sulfate solution.				
First te	st tube	Plac	e a sp	patula full of magnesium filings.		
Observ	ration					
Balanc	ed molecu	ılar	and			
ionic	equations	for	the			
reaction	n that occur	-				
Second	l test tube	Plac	ce a sp	patula full of zinc granules.		
Observ	ration					
Balanc	ed molecu	ılar	and			
ionic	equations	for	the			
reaction that occur						
Third t	est tube	Plac	ce a sp	batula full of iron filings.		
Observation						
Balanc	ed molecu	ılar	and			
ionic	equations	for	the			
reaction	n that occur	• -				

Answer question

In which direction does occur displacement of metals from solutions of their salts? Why?

Practical work N 3 «Periodic law»

3.1. Use the periodic table to help you complete Table 4.

Table 4

Chemical element	Electronic configuration	Atomic number	Period	Group	Sub-group
		4			
	$1s^22s^22p^3$				
			3	IV	main
Magnesium					
		26			
	$[Kr]4d^55s^1$				
			6	IV	secondary
Aurum					
		47			
	$[Ar]3d^{10}4s^{2}4p^{4}$				
			4	VI	main
Tin (Stannum)					

Experiment N 2

«Research of metallic properties of elements with increasing of their atomic number in the group»

N⁰		Performing the experiment			
	Place 1-2 mL of	boric acid to a clean test tube and add 3-4 drops of methyl-orange			
	solution.				
Observat	tion				
	To each of two	o clean test tubes add 2-3 mL of aluminum chloride solution and			
2	carefully dropw	rise add concentrated sodium hydroxide solution to precipitate			
	formation.				
Observat	tion				
Balanced	d molecular and				
ionic eq	uations for the				
reaction	that occur				
First test	tube Add s	ulfuric acid solution.			
Observat	tion				
Balanced	d molecular and				
ionic eq	uations for the				
reaction	that occur				
Second t	est tube Add a	n excess of concentrated sodium hydroxide solution.			
Observat	tion				
Balanced molecular and					
ionic equations for the					
reaction that occur					
3	To each of two clean test tubes add 2-3 mL of indium chloride solution and carefu				
	dropwise add con	ncentrated sodium hydroxide solution to precipitate formation.			
Observat	tion				
Balance	l molecular and				
ionic eq	uations for the				
reaction	that occur				
First test	tube Add s	ulturic acid solution.			
Observat	tion				
	i molecular and				
ionic equations for the					
reaction	that occur				
Second t	est tube Add a	in excess of concentrated sodium hydroxide solution.			
Observat	lion				
Balanced	a molecular and				
ionic eq	uations for the				
reaction	that occur				

Experiment 2.1.

Answer questions

1. Identify classes of inorganic compounds for obtained compounds of boron, aluminum and indium.

2. Explain the change of metallic properties of elements with increasing of their atomic number in the group.

Date Teacher's signature

Semantic Module 2 «Molecular Structure and Chemical Bonding»

Topic 3 «Chemical Bond. Molecular Structure, Valence Bond Method, Molecular

Orbital Theory »

Practical work N 4 «Chemical bond. Molecular structure»

4.1. Complete Table 5.

Table 5

	Prese	ence		Polar or	Oxidation	Coordination
Molecule	σ-bond	π -bond	Hybridization	nonpolar	number of	number of
	0 -0011 u	<i>n</i> -0011d		molecule	atoms	atoms
CO_2						
H ₂ O						
BF ₃						
H-C_H						
CCl ₄						
CH ₃ Cl						
C_2H_2						
CH ₂ Cl ₂						
HCN						
C_2H_4						
HC1						
NH ₃						

Experiment N 5 «Molecular orbital method»

5.1. Construct the energy-level diagram for molecular orbitals of the following diatomic homonuclear particles and determine the bond order in these molecules.

02	02
Bond order	Bond order

	$\mathbf{O_2}^+$	
Bond order		

Answer question

Write the above diatomic homonuclear molecules in the order of increasing:

- a) chemical bond energy _____
- b) chemical bond length _____

5.2. Construct the energy-level diagram for molecular orbitals of the following diatomic heteronuclear particles and determine the bond order in these molecules.

NO	NO
Bond order	Bond order

\mathbf{NO}^+
Bond order

Answer question

Write the above diatomic heteronuclear molecules in the order of increasing:

a) chemical bond energy _____

b) chemical bond length _____

Date

Teacher's signature

Topic 4 «Classification of Inorganic Compounds. Oxides»

Experiment N 3 «Preparation of oxides and their properties»

Experiment 3.1. Preparation of acidic oxides

N⁰		Performing the experiment	
1	Transfer 2-4 drops of concentrated sulfuric acid solution to a clean test tube		
1	add a small piec	e of coal. Carefully heat the test tube using Bunsen's burner.	
Observa	tion		
Balance	d molecular		
equation	for the		
reaction	that occur		
2	Transfer 4-6 dro	ops of sodium nitrite solution to a clean test tube and add 2-3 drops	
2	of sulfuric acid	solution.	
Observa	tion		
Balance	d molecular and		
ionic eq	uations for the		
reaction	that occur		
3	Place a piece of	sulfur to a clean test tube and add 5-6 drops of concentrated nitric	
5	acid solution. C	arefully slightly heat the test tube using Bunsen's burner.	
Observation			
Balance	d molecular		
equation	for the		
reaction that occur			
1	Transfer 4-5 dr	ops of sodium carbonate solution to a clean test tube and add 5-6	
⁴ drops of nitric a		cid solution.	
Observation			
Balanced molecular and			
ionic eq	uations for the		
reaction that occur			

Experiment 3.2. Preparation of basic oxides

N⁰	Performing the experiment			
1	Transfer 2-3 dr	Transfer 2-3 drops of argentum nitrate solution to a clean test tube and add a few		
	drops of sodiur	n hydroxide solution.		
Observation				
Balanced molecular				
and ionic equations for				
the reaction that occur				

2	Burn a piece of magnesium strip in air in a porcelain crucible or dish.		
Observation			
Balance	d molecular		
and ionic equations for			
the reaction that occur			

Experiment 3.3. Preparation of amphoteric oxides

№	Performing the experiment		
	Transfer 3-4 drop	os of potassium permanganate solution to a clean test tube and add	
1	3-5 drops of amm	nonia solution. Carefully slightly heat the test tube using Bunsen's	
	burner.		
Observa	tion		
Balance	d molecular and		
ionic ec	juations for the		
reaction	that occur		
2	Place crystals of	ammonium dichromate to a porcelain dish. Touch a lighted match	
L	to its surface.		
Observa	tion		
Balance	d molecular		
equation for the reaction			
that occur			
3	Place 1-2 mL of	manganese sulfate solution to a clean test tube and add the same	
volume of po		ium permanganate solution.	
Observation			
Balanced molecular and			
ionic equations for the			
reaction that occur			

Experiment 3.4. Chemical properties of oxides

N⁰	Performing the experiment		
1	Place a spatula full of solid magnesium oxide to a clean test tube and add		
1	drops of hydrod	chloric acid.	
Observation			
Balanced molecular and			
ionic equations for the			
reaction that occur			
2	To each of two clean test tubes place a spatula full of solid zinc oxide.		
First test tube Add s		sulfuric acid solution.	
Observation			

Balanced molecular and		
ionic equations for the		
reaction that occur		
Second test tube Add a		n excess of concentrated sodium hydroxide solution.
Observation		
Balanced molecular and		
ionic equations for the		
reaction that occur		

Date

Teacher's signature

Topic 5 «Classification of Inorganic Compounds. Acids and Bases»

Experiment N 4 «Acids and bases. Their chemical properties»

Experiment 4.1. Preparation of basic hydroxides and their chemical properties

N⁰			Performing the experiment
1	Place a spatula full of calcium oxide to a clean test tube with water and mix. Add a		
1	phenolphthalein		indicator solution.
Observa	tion		
Balance	d mol	ecular	
equation	for	the	
reaction	that occu	r	
2	Transfer	4-6 dr	ops of nickel chloride solution to a clean test tube and add 4-5
2	drops of	sodium	hydroxide solution.
Observa	tion		
Balance	d mol	ecular	
and ioni	c equatio	ns for	
the react	ion that o	ccur	
	Resultin	g precip	pitate divide into 2 test tubes.
First test	tube	Add a	nitric acid solution.
Observation			
Balanced molecular		ecular	
and ionic equations for		ns for	
the reaction that occur		ccur	
Second test tube Add a		Add a	n excess of sodium hydroxide solution.
Observa	tion		

3	Transfer	4-6 dr	ops of cobalt chloride solution to a clean test tube and add 4-5
Ũ	drops of sodium		hydroxide solution.
Observa	tion		
Balance	d mol	ecular	
and ioni	c equatio	ns for	
the react	tion that o	ccur	
			Resulting precipitate divide into 2 test tubes.
First test tube Add a		Add a	nitric acid solution.
Observation			
Balance	Balanced molecular		
and ionic equations for		ns for	
the reaction that occur		ccur	
Second test tube Add a		Add a	n excess of sodium hydroxide solution.
Observation		-	

Experiment 4.2. Preparation of amphoteric hydroxides and their chemical properties

N⁰	Performing the experiment		
1	Transfer 4-6 drops of zinc chloride solution to a clean test tube and add 4-5 drops		
1	of sodium	hydro	oxide solution.
Observa	tion		
Balance	d molec	cular	
and ioni	c equations	s for	
the react	ion that occ	cur	
	Resulting	precij	pitate divide into 2 test tubes.
First test	tube	Add	a nitric acid solution.
Observa	tion		
Balance	d molec	cular	
and ioni	c equations	s for	
the react	ion that occ	cur	
Second t	est tube	Add	an excess of sodium hydroxide solution.
Observa	tion		
Balance	d molec	cular	
and ioni	c equations	s for	
the reaction that occur		cur	
2	Transfer 4	-6 dr	ops of chromium (III) chloride solution to a clean test tube and add
2	4-5 drops of so		dium hydroxide solution.
Observation			
Balance	d molec	cular	
and ioni	c equations	s for	
the reaction that occur		cur	

	Resulting precipitate divide into 2 test tubes.
First test tube	Add a nitric acid solution.
Observation	
Balanced molec	cular
and ionic equations	s for
the reaction that oc	cur
Second test tube	Add an excess of sodium hydroxide solution.
Observation	
Balanced molec	cular
and ionic equations	s for
the reaction that oc	cur

Experiment 4.3. Preparation of acids and their chemical properties

N⁰	Performing the experiment		
	Place about 0,5	5 g of sodium chloride to a clean test tube and add 0,5 mL of	
1	concentrated su	lfuric acid solution. Carefully heat the test tube using Bunsen's	
	burner.		
Observa	tion		
Balance	d molecular		
equation	for the		
reaction	that occur		
2	Transfer 3-4 dr	ops of sodium silicate solution to a clean test tube and add 2-3	
2	drops of hydroc	hloric acid solution.	
Observa	tion		
Balance	d molecular		
and ionic equations for			
the react	ion that occur		
3	Place some grar	nules of zinc to a clean test tube and add 7-8 drops of hydrochloric	
5	acid solution.		
Observation			
Balance	d molecular		
and ioni	c equations for		
the react	ion that occur		
1	Place 2-3 mL o	f diluted sulfuric acid solution to a clean test tube and add copper	
-	(II) oxide. Caref	fully heat the test tube using Bunsen's burner.	
Observa	tion		
Balance	d molecular		
and ionic equations for			
the reaction that occur			

5	Place 1-2 mL of sodium hydroxide solution to a clean test tube and add a drop of			
-	phenolphthalein	indicator solution. Then add hydrochloric acid solution.		
Observa	tion			
Balance	d molecular			
and ion	c equations for			
the react	tion that occur			
6	Place a crystal of	of calcium carbonate to a clean test tube and add 4-5 drops of nitric		
U	acid solution.			
Observation				
Balanced molecular				
and ionic equations for				
the reaction that occur				
7	Transfer 4-5 dro	ops of barium chloride solution to a clean test tube and add sulfuric		
/	acid solution.			
Observation				
Balanced molecular				
and ionic equations for				
the reaction that occur				

Date

Teacher's signature

Topic 6 «Classification of Inorganic Compounds. Salts, Complex Salts. Biorole, Toxicity and Application of Inorganic Compounds in Medicine and Pharmacy

Experiment N 5

«Preparation of salts and their chemical properties»

Experiment 5.1. Preparation of neutral salts and their chemical properties

No	Performing the experiment					
•	Transfer 4-6 drops of lead (II) nitrate solution to a clean test tube and add 4					
1	drops of sodiur	n sulfate solution.				
Observa	tion					
Balance	d molecular					
and ioni	c equations for					
the react	tion that occur					
2	Transfer 4-6 dr	ops of argentum (I) nitrate solution to a clean test tube and add 4-5				
2	drops of sodiur	n bromide solution.				
Observation						
Balanced molecular						
and ioni	c equations for					

the reaction that occur		
2	Transfer 4-6 d	rops of barium chloride solution to a clean test tube and add 4-5
5	drops of sodiur	n carbonate solution.
Observation		
Balanced molecular		
and ionic equations for		
the reaction that occur		

Experiment 5.2. Preparation of acidic salts and their chemical properties

N⁰		Performing the experiment						
1	Place 1-2 mL o	Place 1-2 mL of calcium hydroxide solution to a clean test tube and add dropwis						
1	phosphoric acid	d solution.						
Observa	tion							
Balance	d molecular							
and ioni	c equations for							
the react	tion that occur							
	Add an excess	of phosphoric acid solution to resulting precipitate.						
Observation								
Balance	d molecular							
and ioni	c equations for							
the react	tion that occur							
2	Transfer 3-4 dr	ops of sodium hydrocarbonate solution to a clean test tube and add						
L	2-3 drops of ba	rium hydroxide solution.						
Observation								
Balanced molecular								
and ionic equations for								
the react	tion that occur							

Experiment 5.3. Preparation of basic salts and their chemical properties

N⁰	Performing the experiment					
1	Transfer 4-5 drops of copper (II) sulfate solution to a clean test tube and add a fe					
1	drops of dilute s	sodium hydroxide solution.				
Observa	tion					
Balance	d molecular					
and ionic equations for						
the react	ion that occur					
Carefully heat		he resulting precipitate using Bunsen's burner.				
Observation						
Balanced molecular						
and ionic equations for						

the reaction that occur		
2	Transfer 4-5 dr	ops of cobalt (II) chloride solution to a clean test tube and add a
2	few drops of dil	lute sodium hydroxide solution.
Observa	tion	
Balance	d molecular	
and ioni	c equations for	
the react	tion that occur	
	Add hydrochlor	ric acid solution to resulting precipitate.
Observa	tion	
Balanced molecular		
and ionic equations for		
the react	tion that occur	

Experiment 5.4. Preparation of complex salts

N⁰		Performing the experiment				
1	Transfer 3-4 drops of copper (II) sulfate solution to a clean test tube and a					
	2-3 mL of conce	entrated ammonia solution.				
Observa	tion					
Balance	d molecular					
and ioni	c equations for					
the react	tion that occur					
2	Transfer 3-4 dro	ops of nickel (II) chloride solution to a clean test tube and add	2-			
2	3 mL of concent	trated ammonia solution.				
Observa	tion					
Balanced molecular						
and ionic equations for						
the react	tion that occur					

Experiment N 6 «Classes of inorganic compounds»

Experiment 6.1.

N⁰		Performing the experiment					
1	Transfer 4-6 dr	Transfer 4-6 drops of a solution of lead (II) nitrate to a clean test tube and add					
1	4-5 drops of potassium chromate solution.						
Observation							
Balanced molecular and							
ionic equations for the							
reaction that occur							
		Resulting precipitate divide into 2 test tubes.					

First test tube	e Add a	few drops of nitric acid.		
Observation	ľ			
Balanced molecular and				
ionic equation	ons for the			
reaction that	occur			
Second test to	ube Add	a few drops of sodium hydroxide solution. If necessary, carefully		
	heat t	e test tube using Bunsen's burner.		
Observation				
Balanced mo	lecular and			
ionic equation	ons for the			
reaction that	occur			
2 To a	each of two	clean test tubes place a granule of tin (stannum).		
First test tube	e Add s	5-6 drops of concentrated sulfuric acid solution.		
Observation				
Balanced mo	lecular and			
ionic equation	ons for the			
reaction that	occur			
Second test to	ube Add 1	mL of concentrated sodium hydroxide solution.		
Observation				
Balanced mo	lecular and			
ionic equation	ons for the			
reaction that	occur			
3 Plac	ce about 0,5	mL of copper (II) sulfate solution to a clean test tube and add the		
same volume of		f potassium iodide solution.		
Observation				
Balanced molecular and				
ionic equations for the				
reaction that	occur			

Date

Teacher's signature

Topic 7 «Complex Compounds»

Experiment N 7

«Complex compounds»

Experiment 7.1. Anionic complex preparation

N⁰		Performing the experiment					
1	Transfer 4-6 dro	ops of cobalt (II) nitrate solution to a clean test tube and add 4-5					
	drops of potassi	um thiocyanate solution.					
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
2	Transfer 4-6 dr	ops of bismuth (III) nitrate solution to a clean test tube and add					
	potassium iodid	e solution.					
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
	Add an	n excess of potassium iodide solution.					
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
3	Transfer 4-5 dr	ops of iron (III) chloride solution to a clean test tube and add an					
	excess of K ₄ [Fe	(CN) ₆] solution.					
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
4	Transfer 4-5 dro	ops of iron (II) chloride solution to a clean test tube and add an					
	excess of K ₃ [Fe(CN) ₆] solution.					
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
5	Transfer 2-3 drog	ps of iron (III) chloride solution to a clean test tube and add 1-					
	2 mL of potassiu	m thiocyanate solution.					
Observa	tion						
Balance	d molecular and						
ionic equations for the							
reaction	that occur						

Experiment 7.2. Cationic complex preparation

$\mathbb{N}_{\underline{0}}$	Performing the experiment				
1	Transfer 4-6 drops of cadmium (II) chloride solution to a clean test tube and add 4-				
	5 drops of amme	onia solution.			
Observa	tion				
Balance	d molecular and				
ionic ec	uations for the				
reaction	that occur				
	Add an excess o	f ammonia solution.			
Observa	tion				
Balance	d molecular and				
ionic ec	uations for the				
reaction	that occur				
2	Transfer 4-5 drog	ps of cobalt (II) chloride solution to a clean test tube and add a few			
	drops of ammoni	ia solution.			
Observa	tion				
Balance	d molecular and				
ionic ec	uations for the				
reaction	that occur				
Add an excess o		f ammonia solution.			
Observation					
Balanced molecular and					
ionic ec	uations for the				
reaction	that occur				

Experiment 7.3. Preparation of compound, that contains complex cation and complex anion

N⁰	Performing the experiment						
1	Transfer 2 drop	ps of K ₄ [Fe(CN) ₆] solution and add 4 drops of nickel sulfate					
	solution.						
Observa	tion						
Balance	d molecular and						
ionic ec	juations for the						
reaction	that occur						
	Add an excess o	f ammonia solution to dissolve the precipitate. Wait 1-2 minutes.					
Observa	tion						
Balanced molecular and							
ionic equations for the							
reaction	that occur						

Practical work N 6 «Complex compounds»

6.1. Complete Table 6.

Type of hybridization									
phere	Oxidation number								
Outer	Formula								
sphere	Oxidation number								
Inner	Formula								
gand	Oxidation number								
Lig	Formula								
	CN								
Central ion	Oxidation number								
	Symbol								
Name									
Complex compound		[Ag(NH ₃) ₂]C	[Cr(H ₂ O) ₆]Cl	$K_2[Zn(OH)_4]$	[Pt(NH ₃) ₅ Cl] Cl ₃	Na ₃ [Al(OH) ₆ 1	$K_2[Cu(CN)_4]$	Na ₂ [Ni(CN) ₄	[Pt(NH ₃) ₂ Cl ₂

Table 6

Date

Teacher's signature

Topic 8 «Redox Reactions»

Experiment N 8

«Redox reactions»

Experiment 8.1. Influence of pH on the oxidative ability of potassium permanganate

N⁰		Performing the experiment									
1	To each	of three	clean	test	tubes	add	4-5	drops	of	potassium	permanganate
	solution.										
First tes	t tube	Add 4-5	drops	of s	ulfuric	acid	solu	tion and	d 4-	5 drops of	sodium sulfite
		solution.									
Observa	tion										
Balance	d n	nolecular									
equation	n for the	reaction									
that occ	ur										
Oxidizii	ng agent										
Reducir	ig agent										
Second	test tube	Add 4-5	drops	of s	odium	hydı	oxid	e solut	ion	and 4-5 dr	ops of sodium
		sulfite so	olution	•							
Observa	tion										
Balance	d n	nolecular									
equation	n for the	reaction									
that occ	ur										
Oxidizii	ng agent										
Reducir	ig agent										
Third te	st tube	Add 4-5	drops	of so	dium s	sulfite	e solu	ition.			
Observa	tion										
Balance	d n	nolecular									
equation	n for the	reaction									
that occur											
Oxidizing agent											
Reducing agent											
2 Transfer 3-4 drops			of hy	drog	en per	oxide	solu	ition to	cle	ean test tub	e and add 3-4
	drops of s	sulfuric ac	id solu	tion	and 3-	4 dro	ps of	potass	ium	permangar	nate solution.
Observation											
Balanced molecular											
equation for the reaction											
that occur											

Oxidizing agent	
Reducing agent	

Experiment 8.2. Oxidative properties of potassium dichromate

N⁰	Performing the experiment						
1	To each	To each of three clean test tubes add 4-5 drops of potassium dichromate solution					
	and add	and add a few drops of sulfuric acid solution.					
First tub	e tube	Add 3-4 0	rops of tin (II) chloride solution.				
Observa	ition						
Balance	d 1	molecular					
equation	n for the	reaction					
that occ	ur						
Oxidizii	ng agent						
Reducin	ig agent						
Second	test tube	Add 3-4 c	drops of potassium iodide solution.				
Observa	tion						
Balance	d 1	molecular					
equation	n for the	reaction					
that occ	ur						
Oxidizii	ng agent						
Reducin	ig agent						
Third te	st tube	Add 4-5 c	drops of sodium nitrite solution.				
Observation							
Balanced molecular							
equation for the reaction							
that occur							
Oxidizing agent							
Reducin	ig agent						

Experiment 8.3. Reducing properties of manganese (II) compounds

N⁰	Performing the experiment					
1	Transfer 5-6 drops	s of potassium permanganate solution to clean test tube and add				
	5-6 drops of manga	anese (II) sulfate solution.				
Observation						
Balanced molecular						
equation	n for the reaction					
that occ	ur					
Oxidizi	ng agent					
Reducir	ng agent					

Experiment 8.4. Reducing properties of hydrochloric acid

$\mathbb{N}_{\underline{0}}$	Performing the experiment						
1	Place small amoun	Place small amount of crystalline potassium permanganate to clean test tube and					
	add a few drops of	concentrated hydrochloric acid solution.					
Observa	ation						
Balance	ed molecular						
equation	n for the reaction						
that occ	ur						
Oxidizi	ng agent						
Reducir	ng agent						

Date

Teacher's signature

Semantic Module 3 «Theoretical Bases of Chemical Processes»

Topic 9 «Thermodynamic and Kinetic Regularities of Chemical Processes.

Chemical Equilibrium »

Experiment N 9

«Determination of the heat of neutralization»

The operation process

1	Using cylinder measure 25 mL of 1 mole/L sodium hydroxide solution and transfer it
1	to the Dewar vessel.
2	Measure the temperature (T_1) with the thermometer.
	Using cylinder measure 25 mL of sulfuric acid solution with the molarity of
3	equivalent 1 mole/L and add it to the Dewar vessel. Mix the contents of the Dewar
	vessel.
4	Measure the temperature (T_2) with the thermometer.
5	Write down the T_1 and T_2 to the Table 7.
6	Repeat the steps 1-5 for 1 mole/L chloride acid, nitric acid and the acetate acid
0	solutions.

Table 7

Acid	$c\left(\frac{1}{z}acid\right),$ mole/L	Т ₁ , К	ТаК	ΔT, K	$-\Delta H^{\circ}_{neutral}$	$-\Delta H^{\circ}_{neutralization}, kJ/mole$		
			12, 10		Reference value	Experimental value		
H_2SO_4					53			
HCl					56			
HNO ₃					56			
CH ₃ COOH					47			

Evaluation

,

Calculate the heat of neutralization for each acid and write down them to the Table 7:

$$\Delta H_{neutralization}^{\circ} = \frac{C \cdot [V(base) + V(acid)] \cdot \Delta T \cdot \rho}{c \left(\frac{1}{z} acid\right) \cdot V(acid)}$$

where, C – thermal capacity (4,18 kJ/K); V(acid) – volume of acid solution, L; V(base) – volume of base solution, L; ρ – density of solution ($\approx 1 \text{ kg/L}$); $c\left(\frac{1}{z}acid\right)$ – molarity of equivalent of acid, mol/L.

$\Delta H^{\circ}_{neutralization} (H_2 SO_4) =$	=	kJ/mole
$\Delta H^{\circ}_{neutralization}$ (HCl) =	=	kJ/mole
$\Delta H^{\circ}_{neutralization} (HNO_3) =$	=	kJ/mole
$\Delta H^{\circ}_{neutralization} (CH_3COOH) =$	=	kJ/mole

Write the four neutralization reactions in the ionic and molecular forms: $H_2SO_4+NaOH=$ _____

HCl+NaOH=

CH₃COOH+NaOH=____

Conclusion

Compare experimental values of the heats of neutralization with reference values and explain difference between them:

Experiment N 10 «Kinetics of the interaction of sodium thiosulfate with sulfuric acid»

Experiment 10.1. The dependence of the rate of a chemical reaction on the concentration of the reactants

Sulfuric acid reacts with sodium thiosulfate with formation of thiosulfuric acid according to following steps:

$$Na_2S_2O_3 + H_2SO_4 = H_2S_2O_3 + Na_2SO_4$$
 (fast)

 $H_2S_2O_3 = S \downarrow + SO_2 \uparrow + H_2O$ (comparatively slow)

According to the chemical kinetics, in case of multi-step reactions, each step will occur at its own distinctive rate. If one step takes place much more slowly than all other steps, it will definitely control the overall reaction rate. The slowest step is called rate determining step. Sulfuric acid concentration remains constant in all experiments, so estimation of conditional reaction rate should be done according to the change in sodium thiosulfate concentration.

The operation process

1	Fill three burettes: 1st - with 0,1 mole/L sodium thiosulfate solution; 2nd - with
	1 mole/L sulfuric acid solution; 3rd – with distilled water.
	Take three clean test tubes.
	Place 1 mL of sodium thiosulfate solution and 4 mL of distilled water from burettes
	to the first clean test tube.
	Place 3 mL of thiosulfate solution and 2 mL of distilled water from burettes to the
	second clean test tube.
	Place 5 mL of thiosulfate solution from burette to the third clean test tube.
3	Mix the contents of test tubes.
4	Take three clean test tubes.

	To each of three test tubes place 5 mL of sulfuric acid solution from burette.
5	Mix together by pairs the contents of the test tubes and write down to the Table 8
5	the time when the turbidity arises by means of the stop-watch.

Table 8

Mo	V (solution), mL			V(mixture) mI	$c(Na,S,O_{2})$ mole/L	το	n c ⁻¹
JN⊇	$Na_2S_2O_3$	H ₂ O	H_2SO_4	v (mixture), mL	$C(11a_2S_2O_3), 1101C/L$	ι, ι	0, C
1	1	4	5	10			
2	3	2	5	10			
3	5	0	5	10			

Evaluation

1. Calculate molarity of $Na_2S_2O_3$ obtained after dilution according to the following formula and notice the results to the Table:

$$c_{i}(Na_{2}S_{2}O_{3}) = c_{i}(H_{2}S_{2}O_{3}) = \frac{c_{o}(Na_{2}S_{2}O_{3}) \cdot V_{i}(Na_{2}S_{2}O_{3})}{V_{i}(mixture)},$$

where: $c_0(Na_2S_2O_3)$ – initial molarity of $Na_2S_2O_3$ solution, mol/L; $V_i(Na_2S_2O_3)$ – volume of $Na_2S_2O_3$ solution; $V_i(mixture)$ – total volume of mixed reagents.

$$c_{3}(Na_{2}S_{2}O_{3}) = c_{3}(H_{2}S_{2}O_{3}) = \frac{c_{0}(Na_{2}S_{2}O_{3}) \cdot V_{3}(Na_{2}S_{2}O_{3})}{V_{3}(mixture)} = ------= mole/L$$

2. Calculate values of reaction rates (v) according to the following formula:

$$\upsilon_{1} = \frac{1}{\tau_{1}} = ----- = \sec^{-1}$$
$$\upsilon_{2} = \frac{1}{\tau_{2}} = ----- = \sec^{-1}$$
$$\upsilon_{3} = \frac{1}{\tau_{3}} = ----- = \sec^{-1}$$

3. Plot the graph $v = f(c(Na_2S_2O_3))$ and make conclusions about dependence obtained.

Conclusion

The decompositions rate of the $H_2S_2O_3$ is ______versus increasing of its molarity.

Experiment 10.2. Effect of catalyst on the rate of chemical reaction

As catalyst for decomposition thiosulfuric acid used 0,5 N solution of copper (II) sulfate, c $(\frac{1}{2} \text{ CuSO4}) = 0,5 \text{ mole/L}.$

The operation process

1	Fill three burettes: 1st - with 0,1 mole/L sodium thiosulfate solution; 2nd - with					
	1 mole/L sulfuric acid solution; 3rd – with distilled water.					
	Take four clean test tubes.					
2	To each of four clean test tubes place 4 mL of sodium thiosulfate solution from					
	burette.					
	Take four clean test tubes.					
	To each of four clean test tubes place 4 mL of sulfuric acid solution from burette.					
3	Add 1 drop of copper (II) sulfate solution to the second test tube, add 2 drops of					
	copper (II) sulfate solution to the third test tube, add 3 drops of copper (II) sulfate					
	solution to the fourth test tube.					
4	Mix together by pairs the contents of the test tubes and notice to the Table 9 the time					
4	when the turbidity arises by means of the stop-watch.					

Table 9

№	$V(Na_2S_2O_3), mL$	V (H ₂ SO ₄), mL	Number of drops CuSO ₄	τ, c	υ, c ⁻¹
1	4	4	0		
2	4	4	1		
3	4	4	2		
4	4	4	3		

Evaluation

Calculate values of reaction rates (v) according to the following formula:

Conclusion

By increasing the concentration of catalyst (complex ions of copper (II)) reaction rate

Experiment N 11 «Chemical Equilibrium»

Experiment 11.1. Effect of changing the amounts of reacting species on equilibrium

N⁰	Performing the experiment		
1	Place 30-40 mL of iron (III) chloride solution (ω (FeCl ₃)=0,05%) to a clean		
	100 mL flask and add 30-40 mL of potassium thiocyanate ($\omega(KSCN) = 0.1^{\circ}$		
	Mix the content	nts of	f flask.
Observa	tion		
Balance	d molec	ular	
equation	n for the reac	tion	
that occ	ur		
		Div	ide the resulting solution into four clean test tubes.
First tes	t tube	Kee	p this test tube to provide a reference colour for the next
		exp	eriments.
Second	test tube	Add	1.5 mL of iron (III) chloride solution (ω (FeCl ₃) = 20%).
Observa	tion		
In which direction does		loes	
equilibrium shift (to the		the	
right, to the left)?			
Third te	Third test tube Add		1.5 mL of potassium thiocyanate ($\omega(KSCN) = 20\%$).
Observation			

In which direction does		
equilibrium shift (to	the	
right, to the left)?		
Fourth test tube Add		l about 2 g of solid potassium chloride.
Observation		
In which direction does		
equilibrium shift (to the		
right, to the left)?		

Experiment 11.2. Effect of changing the temperature on equilibrium.

	Ν	Performing the experiment
1	To each of	f the two test tubes add 10-15 drops of starch solution and add 5-7 drops of
1	iodine solu	ation in each one.
Obser	vation	
First test tube		Keep this test tube to provide a reference colour for the next
		experiments.
Second test tube		Carefully heat the test tube using Bunsen's burner.
Observation		
		Cool off the test tube.
Obser	vation	

Date

Teacher's signature

Semantic Module 4 «Physical-Chemical Properties of Solutions»

Topic 10 «Solutions. Methods of Expressing Concentration of Solutions.

Nonelectrolytes and Electrolytes Solutions. Equilibrium in Solutions of Weak

Electrolytes »

Experiment N 12

«Preparation of cobalt (II) nitrate solution by diluting concentrated solution»

Task

Prepare 100 mL of cobalt (II) nitrate solution with molarity of equivalent **0,02 mole/L** from cobalt (II) nitrate solution with molarity of equivalent **0,4 mole/L**.

The operation process

1. Calculate volume of cobalt (II) nitrate solution (molarity of equivalent is 0,4 mole/L) that will be taken for preparation of 100 mL of cobalt (II) nitrate solution with molarity of equivalent 0,02 mole/L using the next formula:

$$c_{1}\left(\frac{1}{2}Co(NO_{3})_{2}\right) \cdot V_{1}(Co(NO_{3})_{2}) = c_{2}\left(\frac{1}{2}Co(NO_{3})_{2}\right) \cdot V_{2}(Co(NO_{3})_{2});$$

$$V_{1}(Co(NO_{3})_{2}) = \frac{c_{2}\left(\frac{1}{2}Co(NO_{3})_{2}\right) \cdot V_{2}(Co(NO_{3})_{2})}{c_{1}\left(\frac{1}{2}Co(NO_{3})_{2}\right)} = \frac{1}{1-1} = L = L = L = L$$

- 2. Prepare laboratory glassware:
 - a) rinse the clean pipette with distilled water, and then with 0,4 mole/L cobalt (II) nitrate solution;
 - b) rinse clean beaker and volumetric flask with distilled water.
- 3. Pipette off calculated volume of 0,4 mole/L cobalt (II) nitrate solution to the 100 mL volumetric flask.
- 4. Adjust the volume to 100 mL with distilled water.
- 5. Close volumetric flask and shake upside to mix contents.

Experiment N 13 «Nonelectrolytes and electrolytes solutions»

Experiment 13.1. Comparison of chemical activity of acid

N⁰	Performing the experiment		
1	To eac	To each of the two clean test tubes place a few small pieces of marble.	
First test tube		Add 5 mL of hydrochloric acid.	

Observation	
Balanced molect	ılar
and ionic equations	for
the reaction that occ	ur
Second test tube A	Add 5 mL of acetic acid.
Observation	
Balanced molecu	ılar
and ionic equations	for
the reaction that occ	ur
2 To each o	f the two clean test tubes place a few small pieces of zinc.
First test tube Ad	dd 5 mL of hydrochloric acid.
Observation	
Balanced molecu	ılar
and ionic equations	for
the reaction that occ	ur
Second test tube A	Add 5 mL of acetic acid.
Observation	
Balanced molect	ılar
and ionic equations	for
the reaction that occ	ur

Experiment 13.2. The shift of the dissociation equilibrium of weak electrolyte

No		Performing the experiment
1	To each of	the two clean test tubes add 5-10 drops of diluted acetic acid. Add one
	drop of me	thyl orange indicator solution in each one.
Observation		
First test tube		Keep this test tube to provide a reference colour for the next
		experiments.
Secon	d test tube	Place a few small pieces of sodium acetate and stir with a glass rod.
Observation		

Answer question

How and why change the dissociation degree of acetic acid?

Date

Teacher's signature

Topic 11 «Ionic Equilibrium. Stability of Complex Ions, Solubility Product Constant»

Experiment N 14 «The conditions of precipitate formation»

The coexistence of an ionic solid and its component ions in solution is one example of a chemical equilibrium:

 $A_m B_n \rightleftharpoons m A^{n+} + n B^{m-}$.

This equilibrium can be quantified using the solubility product principle, which states that in a saturated solution of an ionic compound, the product of the molar activities, called the solubility product constant or K_{sp} , has a constant value at any particular temperature and pressure.

$$\mathbf{K}_{\rm sp}(\mathbf{A}_{\rm m}\mathbf{B}_{\rm n}) = [\mathbf{A}^{\rm n+}]^{\rm m} \cdot [\mathbf{B}^{\rm m-}]^{\rm n}.$$

Ion product quotient, Q, is the product of the equilibrium expression when the system is not at equilibrium.

Criteria for precipitation:

Precipitation should occur if $Q > K_{sp}$. A solution is just saturated if $Q = K_{sp}$.

A solution is just saturated if $Q = K_{sp}$.

Precipitation cannot occur if $Q < K_{sp.}$

The operation process

1	To each of the two clean test tubes add 4 drops of the 0,001 mole/L lead nitrate solution.
2	Add 4 drops of the 0,05 mole/L potassium chloride solution to the first test tube.
3	Add 4 drops of the 0,05 mole/L potassium iodide solution to the second test tube.
4	Write down the observations to the Table 10.

Evaluation

1. Write the formation reactions for salts $PbCl_2$ and PbI_2 in the ionic and molecular forms:

2. Calculate the molarity of Pb^{2+} , $C\Gamma$, Γ in obtained solutions using the next formula:

 $c(x) \cdot V(solution) = c_1(x) \cdot V_1(solution)$

where c(x) – initial molarity of substance in solution; $c_1(x)$ – resulting molarity of substance in obtained solution; V(solution) – volume of the solution with initial molarity c(x); V₁(solution) – volume of the solution with molarity $c_1(x)$.

$$c_1(x) = \frac{c(x) \cdot V(\text{solution})}{V_1(\text{solution})};$$

$$c(Pb^{2+}) = \underline{\qquad} = mole/L$$

$$c(Cl^{-}) = \underline{\qquad} = mole/L$$

$$mole/L$$

3. Calculate the $Q(PbCl_2)$ and $Q(PbI_2)$ and write down to the Table 10:

 $Q(PbCl_2) = [Pb^{2+}] \cdot [Cl^{-}]^2 =$

```
Q(PbI_2) = [Pb^{2+}] \cdot [I^-]^2 =
```

Table 10

Electrolyte	$c_0(x)$, mole/L	V ₀ (x), mL	Observation	K_{sp} , mole ³ /L ³	Q, mole $^3/L^3$
$Pb(NO_3)_2$	0,001	0,4			
KCl	0,05	0,4			
KI	0,05	0,4			
PbCl ₂				1,7.10 ⁻⁵	
PbI ₂				8,7.10 ⁻⁹	

4. Compare Q (PbCl₂) and K_{sp} (PbCl₂), Q (PbI₂) and K_{sp} (PbI₂), than make conclusions about formation of precipitate.

a) precipitate of PbCl₂ is ______ because Q (PbCl₂) _____ K_{sp} (PbCl₂); b) precipitate of PbI₂ is ______ because Q (PbI₂) _____ K_{sp} (PbI₂).

> Date _____ Teacher's signature _____

Topic 12 «Ionic Product of Water, pH. Hydrolysis of Salts »

Experiment N 15 «Dependence pH of acid solution on concentration»

The operation process

1	Place 20 mL acetic acid solution to the 50 mL beaker (concentrations are shown in the
	Table 11).
2	Measure pH of solution by means of pH-meter.
3	Write down pH values to the Table 11.
4	Calculate pH using formulas and write down them to the Table 11.
5	Compare measured and calculated pH values.

Table 11

N	c(CH ₃ COOH), mole/L	V(CH ₃ COOH), mL	рН		
1			calculated	measured	
1	0,5	20			
2	0,1	20			
3	0,05	20			
4	0,01	20			

Evaluation

Calculate pH using the following formula:

$$pH = -\lg\left(\sqrt{c \cdot K_{diss}}\right),$$

where c – molarity of acetic acid solution, mole/L; K_{diss} – dissociation constant of acetic acid (1,8×10⁻⁵ mole/L).

$$pH_{1} = -\lg(\sqrt{c_{1} \cdot K_{diss}}) = -\lg(\sqrt{0.5 \cdot 1.8 \cdot 10^{-5}}) =$$

$$pH_{2} = -\lg(\sqrt{c_{2} \cdot K_{diss}}) = -\lg(\sqrt{0.1 \cdot 1.8 \cdot 10^{-5}}) =$$

$$pH_{3} = -\lg(\sqrt{c_{3} \cdot K_{diss}}) = -\lg(\sqrt{0.05 \cdot 1.8 \cdot 10^{-5}}) =$$

$$pH_{4} = -\lg(\sqrt{c_{4} \cdot K_{diss}}) = -\lg(\sqrt{0.01 \cdot 1.8 \cdot 10^{-5}}) =$$

$$Conclusion$$

With decreasing concentration of acetic acid pH

Experiment N 16 «Hydrolysis of Salts»

Experiment 16.1. Determination the pH of electrolytes solutions using indicators

1	Take three clean test tubes.
	Place 5 mL of distilled water to the first test tube; 5 mL of sulfuric acid solution – to
	the second test tube; 5 mL of sodium hydroxide solution – to the third test tube.
2	Add 3-4 drops of methyl red indicator solution in each one. Mix the contents of test
	tubes and write down the color of solutions in each test tube to the Table 12.
3	Take six clean test tubes.
	To each of the 6 test tubes place 5 mL of distilled water and 3-4 drops of methyl red
	indicator solution. Add a few crystals of Na ₂ CO ₃ to the first test tube, CuSO ₄ - to the
	second test tube, NaCl - to the third test tube, Na ₂ HPO ₄ - to the fourth test tube,
	$Al_2(SO_4)_3$ – to the fifth test tube, $(NH_4)_2CO_3$ – to the sixth test tube.
4	Mix the contents of test tubes. Write down the color of solutions in each test tube to the
	Table 12.
5	Repeat steps 1-4 for phenolphthalein indicator solution.

Table 12

	Color of	pH of the			
Electrolyte	Methyl red	Phenolphthalein	electrolytes solutions		
H ₂ O					
H_2SO_4					
NaOH					
Na ₂ CO ₃					
CuSO ₄					
NaCl					
Na ₂ HPO ₄					
$Al_2(SO_4)_3$					
(NH ₄) ₂ CO ₃					

Molecular and ionic equations of hydrolysis of salts

Write the hydrolysis reactions for salts which undergo hydrolysis in the ionic and molecular forms and notice the pH of aqueous solution of these salts (acidic, basic or neutral):

Na ₂ CO ₃ :	
CuSO ₄ :	
NaCl:	
Na ₂ HPO ₄ :	
Al ₂ (SO ₄) ₃ :	
(NH ₄) ₂ CO ₃ :	

Compare the pH of salts solutions predicted by analysis of hydrolysis reactions with pH of determined experimentally.

Conclusion

Aqueous	solut	tion of sod	; a	iqueous solution of copper						
sulfate	is		,	aqueous	solı	ution	of	sodium	carbonate	is
		;	aqueous	solution	of	sodium		hydrogen	phosphate	is
	; aqueous solution of aluminum sulfate is									
aqueous	soluti	on of amm	onium carbo	onate is				_·		

Experiment 16.2. Influence of temperature on the degree of hydrolysis

1	Fill two	beaker	on	half	of	their	volume	with	sodium	acetate	solution	
	$(\omega(CH_3COONa) = 1,5\%)$ and add 2–3 of phenolphthalein indicator solution. Write											
	down the color of solutions to the Table 13.											
2	Heat one of	of the bea	kers	in a w	ater	bath. V	Vrite down	n the ol	oservation	to the Ta	able 13.	

Table 13

Cold solut	tion of salt	Hot solution of salt					
Color of indicator	pH of the solution	Color of indicator	pH of the solution				

Answer questions

1. Why color of the indicator has been changed?

2. How degree of hydrolysis does depend on the temperature?

Date

Teacher's signature

Solubility of Ionic Compounds in Water Key: S = soluble; I = insoluble; D = decomposes in water; U = compound does not exist

Zn	2	2	S	Ι	S	S	Ι	Ι	S	S	Ι	Ι	Ι	Ι	S	Ι	Ι
Sr 2+	2	2	S	Ι	S	S	Ι	Ι	S	S	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Na 1+	5	S	S	S	S	S	S	S	S	S	D	S	S	S	S	S	S
${\rm Ag}_{1+}^{\rm Ag}$	ŀ	1	I	I	S	Ι	Ι	Ŋ	Ι	S	Ι	Ι	I	U	Ι	Ι	Ι
± K	τ	2	S	S	S	S	S	S	S	S	D	S	S	S	S	S	S
Ni 2+	2	2	S	Ι	Ι	S	Ŋ	Ι	S	S	Ι	Ι	Ι	U	S	Ι	Ι
$_{1+}^{\mathrm{Hg}}$	·	1	Ι	Ι	S	I	I	U	Ι	D	Ι	Ι	U	U	Ι	Ι	Ŋ
${\rm Mg}_{2+}$	7	S	S	I	S	S	I	I	S	S	I	I	I	I	S	D	n
$_{2^+}^{Pb}$	7	2	s	Ц	s	s	Ц	I	Ц	s	Ц	Ц	I	I	Ц	Ц	Ц
Н÷	c	N	S	s	s	S	S	H ₂ O	s	s	H ₂ O	s	S	I	S	s	S
Fe 2+		2	s	I	n	s	I	I	s	s	I	I	I	I	s	I	I
Fe 3+	τ	2	S	U	U	S	Ι	Ι	S	S	Ι	S	Ι	U	S	Ι	Ŋ
Cu 2+	2	S	S	Ι	S	S	S	Ι	S	S	Ι	Ι	Ι	U	S	Ι	U
C0 2+	5	2	S	Ι	S	S	I	Ι	S	S	Ι	Ι	Ι	Ι	S	Ι	I
$^{3+}_{cr}$	τ	s	S	Ŋ	U	S	Ŋ	Ι	S	S	Ι	S	Ι	U	S	I	I
Ca 2+	5	2	S	I	S	S	S	Ι	S	S	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Cd 2+	2	S	S	Ι	S	S	I	Ι	S	S	Ι	Ι	Ι	Ι	S	Ι	I
Ba 2+	2	2	S	Ι	S	S	Ι	S	S	S	S	Ι	Ι	S	Ι	D	Ι
$_{1+}^{\mathrm{NH}_4}$		s	S	S	S	S	S	Ι	S	S	U	I	S	U	S	S	S
Al 3+	2	2	s	n	s	s	U	Ι	S	s	Ι	Ι	Ι	Ι	S	D	Ŋ
Cation	Anion	$C_{2}H_{3}O_{2}$	Br ⁻	CO_{3}^{2-}	CIO ₃ ⁻	CI ⁻	$\operatorname{CrO_4}^{2-}$	-HO	Ŀ	NO ^{3⁻}	$0^{2^{-}}$	$C_{2}O_{4}^{2-}$	PO_4^{3-}	SiO ₃ ²⁻	SO_4^{2-}	S ²⁻	SO_3^{2-}

