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The load distribution over the turns of an implant–bone threaded joint is studied. Such a joint is modeled

by a rod structure in which the functional axial force is transferred from the compressed-rod–implant

system to the stretched-rod–bone system through thread turns. The turns are modeled by cantilever

beams attached to the implant and bone rods. Differential equation describing the intensity of

distribution of the axial force is derived in a closed form. The proposed approach to determining the

distribution of the load over the thread of the implant–bone joint can be used to determine the stress state

of the joint, improve its design, and increase the service life of dental prostheses.
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Introduction. The use of implants inserted in bone tissues and used as a support for dental prostheses is effective and

promising trend in the field of dental orthopedics [4–6, 11–14]. Cylindrical implants with exterior thread are widely used in

medical practice. An implant is mounted in a bone by preliminarily drilling a hole and screwing in. After that, an

osseointegration begins, which is adherence of the bone tissue to the implant to form a single implant–bone system.

The service life of prostheses based on implants depends on the magnitude of the stresses at the implant–bone interface.

For this reason, determining the stress state in the threaded implant–bone system is a topical task in stomatology and solid

mechanics [2, 4, 6]. Since experimental investigations in this field either involve substantial difficulties or are impossible, the

mechanical and mathematic simulation of the stress state in an implant–bone system is the basic method [2, 4, 7, 10–14].

The mechanical and mathematical simulation of the implant–bone joint is usually performed using the elasticity theory

and assumptions on the geometric and mechanical characteristics of the elements of the system, their interaction conditions, and

the applied loads. In [2] it was assumed that the outer surface of the implant is smooth, having no thread. The stress state of the

implant–bone system was determined in [8, 9] using the spatial rod and shell models. The problem of a rod subject to a force at

one end and supported by a bone as aWinkler-type foundation at the other was solved in [2]. In [10, 12], the stress–strain state of

an implant–bone systemwas determinedwith the finite-elementmethod assuming that the implant is smooth, having no thread.

The stress distribution in a threaded joint was for the first time analyzed by Zhukowsky in [3]. He assumed that the

thread is square, the bolt is stretched, and the nut is compressed. The threaded joint was modeled by a structure in which the axial

force is transferred from a rod (bolt) to a rod (nut) through thread turns in the form of cantilever beams. In accordance with

Zhukowsky’s model, the turns undergo only shear strains. The forces transferred by the turns are determined as the sum of an

infinite geometrical progression. Zhukowsky showed that, the forces in the turns of the threaded joint are distributed
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nonuniformly, and the distribution depends on the geometrical parameters of the threaded joint and the stiffness of the bolt and

the nut.

Later on, Zhukowsky’s model was developed in [1], where a threaded joint with triangular turns undergoing shear,

bending, and transverse strains was addressed. It was assumed that the joint has continuous turns, making it possible to employ

differential equations solved in closed form. Two types of threaded joint were considered: in first-type joint, the bolt is stretched

while the nut is compressed; in the second-type joint (brace) both bolt and nut are stretched.

The stress state of a threaded implant–bone joint in which the implant is stretched while the bone tissue is compressed

was considered in [4] where the joint was assumed to be a statically indeterminate frame structure. The distribution of forces

between turns of the threaded joint was determined by the methods of structural mechanics.

It should be noted that the loading configuration [4] where the implant is stretched while the bone tissue is compressed

is rare in stomatology. The functional forces exerted by the bolus compress the implant and stretch the adjoining bone tissue.

Such a loading configuration is addressed here. To describe the distribution of the functional load over the thread turns, we will

employ the approach from [1].

Our goal here is to develop a technique for determining the distribution of the load over the turns of the threaded

implant–bone joint to improve the implant design and increase the service life of associated prostheses.

1. Prosthesis Design Based on Screw-Threaded Implants. Figure 1 shows a typical prosthesis comprising artificial

dental crown 1, abatement 2, implant 3 in bone tissue 4, and screw 5 attaching the abatement to the implant. The vertical

functional load Q acts on crown 1 and is transferred through abatement 2 and implant 3 to bone tissue 4. The bone has outer

cortical and inner trabecular layers. The cortical or compact bone has a dense homogeneous structure, while the trabecular one

has a porous structure penetrated by blood vessels. The implant can be inserted either in the cortical bone or in the trabecular one.

Table 1 presents the elastic moduli E and Poisson ratios � of the cortical and trabecular bones as well as of the titan alloy the
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TABLE 1

Material Å, GPa �

Compact bone 13.7 0.30

Trabecular bone 6.9 0.30

Titan alloy VT1-100 111.0 0.35



implants are made of. As is seen, the elastic modulus and strength of the compact bone are almost twice as high as those for the

trabecular bone and substantially lower than those of VT1-100 titan alloy.

2. Compatibility Equations for the Displacements of the Implant and Bone. The design model of a threaded

implant–bone joint before and after loading by the force Q is shown in Figs. 2a and 2b, respectively.

The functional load is transferred from the implant to the bone through the threaded joint causing compression of the

implant and tension of the adjacent bone tissue. The force in the implant and bone varies from 0 toQ, becomingQ(z) at a distance

z from the coordinate origin.

Assume that the forceQ z( )generates a normal stress �
1
( )z that is uniformly distributed over the implant cross-section

but varies along the z-axis as

�
1

1

( )
( )

z
Q z

F
� , (1)

where F r
1 1

2
� � is the implant cross-sectional area, r

1
is the inner radius of the implant thread.

Let us isolate a zone of the bone tissue adjacent to the implant in the form of a hollow cylinder with outer and inner radii

R and r
2
, respectively. Let the cross-sectional area be acted upon by the uniformly distributed normal stress
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� ��( ) is the cross-sectional area of the tissue zone adjacent to the bone. Under the loadQ, the implant shortens

on the segment from 0 to z by �
1
while the bone tissue elongates by �

2
as follows:
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The points of the thread turns of the implant and bone that lie on the effective diameter of the thread and at the distance

z � 0shift by 

1
0( )and 


2
0( )in the axial direction as a result of bending, shear, and transverse deformation of the turns under the

action of the axial force Q. The same points located at the distance z from the coordinate origin shift by 

1
( )z and 


2
( )z .

Let the contact pressure p z( )be uniformly distributed over the surface of the thread turn and dependent on z only. Let us

express the shifts 

1
( )z and 


2
( )z in terms of the contact pressure p z( ), thread pitch s, elastic moduli E

1
and E

2
, and the

dimensionless coefficients �
1
, �

2
as follows [1]:
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The coefficients �
1
and �

2
depend on the geometry of the threaded joint and are defined as follows [1]:
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where �0.84 is a coefficient characterizing the bending and shear of a turn; t r r� �
2 1

is the thread height;� is the thread angle.

Based on Fig. 2, we can write the compatibility equation for the displacements of the screw and nut and the

displacements of the thread turns:

z z z z� � � � � � �� �
1 1 1 2 2 2

0 0
 
 
 
( ) ( ) ( ) ( ). (6)

Transforming this equation and considering (4) and (5), we obtain
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Let us introduce the intensity of the distribution of the axial force over the length q z( ) of the threaded joint:

q z
dQ

dz
( ) � , (8)

which is related to the pressure p z( ) on the turn surface as

p z q z
f

s
( ) ( )� , (9)

where f r r� ��( )
2

2

1

2
is the projection of the thread turn onto a plane perpendicular to the implant axis. Substituting q z( )for p z( )

into (7), we get
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Then Eq. (10) becomes

Q z dz q z q

z

( ) [ ( ) ( )]

0

0	 � � �. (12)

Differentiating (12) with respect to z, we obtain
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� �Q z q z( ) ( )� � . (13)

Repeating differentiation of (13) with respect to z and denoting m
2

� � �/ , we find

�� � �q z m q z( ) ( )
2

0. (14)

The general integral of Eq. (14) takes the form

q z À mz Â mz( ) sinh( ) cosh( )� � . (15)

This equation must satisfy the following boundary conditions:

at z � 0

Q( )0 0� , � � �q z m Q( ) ( )
2

0 0,

at z Í� (H is the implant length)

Q Í Q( ) � , � � �q z m Q H m Q( ) ( )
2 2

.

From (15) it follows that

� � �q z Àm mz Âm mz( ) cosh( ) sinh( ). (16)

Then, using the boundary conditions, we get

À � 0, Â
Qm

mH
�
sinh( )

. (17)

Substituting the values of the constants A and B into (15) yields

q z
Qm mz

mH
( )

cosh( )

sinh( )
� � . (18)

According to (13), the forceQ z( ) in the implant is defined by

Q z
Q mz

mH
( )

sinh( )

sinh( )
� . (19)
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Figures 3 and 4 show how the intensity q z( )varies along the length of the threaded joint and the axial forceQ z( )varies

along the thread turns, respectively. Both graphs were plotted using (18) and (19). It is assumed that Q = 1 N. Eight cases

summarized in Table 2 were considered. The results were obtained for cortical (E
2
= 13.7 GPa) and trabecular (E

2
= 6.9 GPa)

bones and titan implant with thread parameters r
1

�2.1 mm, r
2

�2.5 mm, � � 30
î
. Since the volume of the jaw bone is limited

across the thickness, the outer diameter of the bone zone acted upon by the functional load is greater by 2 mm than the outer

diameter of the thread, i.e., R r� �2
2
. It was assumed that the implant lengthH is equal to 10 and 16mm, and the thread pitch s is

equal to 1 and 2 mm. The number n of turns in the joint varied from 5 to 16.

The dashed curves in Figs. 3 and 4 represent the cortical bone, while the solid curves, the trabecular bone. As is seen, the

behavior of the forces q z( )andQ z( )strongly depends on the geometrical parametersH and s of the joint. The difference between

the functions q z( )andQ z( )in the range of variation inH and s exceeds 100%. The distribution of the load over the thread turns in

the implant–trabecular bone system is more nonuniform than in the implant–cortical bone system. The differences of the

functions q z( )andQ z( )between these bone tissues reaches 12%. Themaximum intensity of distributions of the axial forces q z( )

andQ z( )and of the force�Qapplied to the single turn is observed at the point of application of the compressive force z H� to the

implant.

The values of the parameter m and maximum axial force �Q (in percent of Q) taken up by the thread turn that has the

coordinate z in the interval from (Í s� ) toH are given in the next-to-last and last columns of Table 2. Analyzing Figs. 3 and 4 and

Table 2, we can conclude that �Q increases with increasing thread pitch s and decreasing implant length H and bone elastic

modulus E
2
. For case 4 (an implant with thread pitch s = 2 mm and length H = 10 mm in the trabecular bone), the maximally

loaded turn bears 29.5% of the axial force Q.

Conclusions. The physiological and aesthetic functions of patients with defects in the dental arch are recovered using

prostheses based on dental implants. The motion of the low jaw while chewing a bolus gives rise to functional loads that act

through the prosthesis on the implants and, in case of overloading, may result in necrosis and falling out of implants. The action

of the functional load in the implant–bone system acting along the implant axis has been analyzed. The deformation of the

implant and adjacent bone tissue causes nonuniformity of the distribution of the load between turns of the threaded implant–bone

joint. The thread turn that is the closest to the point of application of the load is maximally loaded. It has been established that the

distribution of the axial load depends on the length and pitch of the implant thread.Moreover, the distribution of the load over the

thread turns depends on the stiffness of the bone tissue and the mechanical properties of the implant. It has been shown that the

distribution of the load over the turns in the implant–cortical bone system is more uniform than in the implant–trabecular bone

system. The difference between the maximum forces for these types of joint in the case of implants made of titan alloy does not

exceed 12%.
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TABLE 2

No. Í, mm E
2
, GPa s, mm n, turns m, m–1

�Q, %

1 10 13.7 1 10 256.8 23.0

2 10 13.7 2 5 131.1 27.2

3 10 6.9 1 10 300.0 26.1

4 10 6.9 2 5 153.8 29.5

5 16 13.7 1 16 256.8 22.7

6 16 13.7 2 8 131.1 23.9

7 16 6.9 1 16 300.0 25.9

8 16 6.9 2 8 153.8 26.9
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