Institute of Molecular Biology and Genetics NAS of Ukraine



## ALL-UKRAINIAN CONFERENCE ON MOLECULAR AND CELL BIOLOGY WITH INTERNATIONAL PARTICIPATION

dedicated to the heroic struggle of the Ukrainian people against russian invadors

June 15-17, 2022



### **CONFERENCE PROCEEDINGS**

Edited by: Mankovska O., Papuga O., Nesterenko Ye., Sobolevskyi M., Antonenko S.

| Organizing committee: | Contacts:                                   |
|-----------------------|---------------------------------------------|
| Oksana Mankovska      | e-mail: <u>rmv.imbg@gmail.com</u>           |
| Inessa Skrypkina      | postal address:                             |
| Oksana Piven          | Institute of Molecular Biology and Genetics |
| Maksym Sobolevskyi    | NAS of Ukraine                              |
| Dmytro Gerasymchuk    | 150, Akademika Zabolotnogo Str.,            |
| Svitlana Antonenko    | Kyiv, Ukraine, 03143                        |
| Oleksandr Papuga      | Web-site: www.imbg.org.ua                   |

24 th February 2022 Russia invaded Ukraine and this terrible war with destruction of civil infrastructure, including cultural, educational, and scientific objects interrupted the scientific work in our country. A lot of scientists were displaced within Ukraine or abroad. Our foreign colleagues immediately demonstrated great support and created a lot of opportunities for Ukrainian scientists in their countries. Despite this, most scientists stayed in Ukraine, some of them even in temporary occupied territories. Therefore, Young Scientist Council and in the Scientific Council of the Institute of Molecular Biology and Genetics NAS of Ukraine created the idea of All-Ukrainian conference with international participation with the aims to encourage Ukrainian scientists, to give the opportunity to colleagues from abroad to demonstrate their staunch support to Ukraine and to keep scientific process ongoing even on the background of the war.

The All-Ukrainian Conference on Molecular and Cell Biology with international participation was held as an online event on Zoom platform, from 15 th to 17 th of June 2022.

#### **KEYNOTE SPEAKERS**

| Pernilla Wittung-Stafshede                    | Andrii Domanskyi                          |
|-----------------------------------------------|-------------------------------------------|
| Chalmers University of Technology,            | University of Helsinki, Finland,          |
| Gothenburg, Sweden                            | Orion Pharma, Turku, Finland              |
| Cecilia Lanny Winata                          | Anton Nekrutenko                          |
| International Institute of Molecular and Cell | Penn State University, PA, USA            |
| Biology, Warsaw, Poland                       | Andreas Ladurner                          |
| Petr Svoboda                                  | Ludwig-Maximilians-Universität            |
| Institute of Molecular Genetics ASCR,         | Munich, Germany,                          |
| Prague, Czech Republic                        | Eisbach Bio GmbH                          |
| Michał Komorowski                             | Planegg/Martinsried, Germany              |
| Institute of Fundamental Technological        | Jan Barciszewski                          |
| Research, Polish Academy of Sciences,         | Adam Mickiewicz University,               |
| Warsaw, Poland                                | Institute of Bioorganic Chemistry, Polish |
| Volodymyr Berest                              | Academy of Sciences, Poznan, Poland       |
| V.N.Karazin Kharkiv National University,      | Mikko Airavaara                           |
| Kharkiv, Ukraine                              | University of Helsinki, Helsinki, Finland |

And Vitaly Kordium (Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv, Ukraine) with special lecture

| EFFECT OF THIAZOLE DERIVATIVE COMPLEXED WITH POLYMERIC<br>CARRIER ON CELLULAR ULTRASTRUCTURE OF MURINE LYMPHOMA<br>CELLS <i>IN VITRO</i><br>Ilkiv M.V., Shalai Ya.R., Babsky A.M                                | 44 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| MODIFICATION OF NUTRIENT MEDIUM COMPOSITION FOR <i>IN VITRO</i><br>CULTURE ESTABLISHMENT OF PAULOWNIA TOMENTOSA<br>Tytarenko N.V., Tesliuk N.I                                                                  | 45 |
| FACTORS INFLUENCING SHAPE OF SODIUM ALGINATE<br>MICROCAPSULES<br>Narozhnyi S.V., Bobrova O.M., Mangasarov D.O., Kovalenko I.F.,<br>Nardid O.A                                                                   | 46 |
| GDVO4:EU3+ NANOPARTICLES AFFECT PROLIFERATION OF<br>FIBROBLAST CULTURE <i>IN VITRO</i><br>Prokopiuk V.Yu., Tkachenko A.S., Maksimchuk P.O., Tkachenko V.L.,<br>Onishchenko A.I., Yefimova S.L., Klochkov V.K    | 47 |
| DOMAIN-INDEPENDENT INHIBITION OF CBP/P300 ATTENUATES<br>α-SYNUCLEIN AGGREGATION<br>Hlushchuk I., Ruskoaho H.J., Domanskyi A., Airavaara M.,<br>Välimäki M.J                                                     | 48 |
| THE EFFECT OF VITAMIN D <sub>3</sub> ON THE BINDING OF SARS-COV-2<br>S-PROTEIN TO ACE2 ON THE SURFACE OF EPITHELIAL CELLS<br>Lisakovska O.O., Guzyk M.M., Krynina O.I., Tykhonenko T.M.,<br>Mazanova A.O        | 49 |
| SPECTROSCOPY STUDIES OF ERYTHROCYTE MEMBRANES AND<br>OXIDATIVE PROCESSES IN PATIENTS WITH CONTROLLED AND TRUE<br>RESISTANT ARTERIAL HYPERTENSION<br>Kuchmenko O.B., Sukhoveev O.V., Matova O.O., Sheiko V.I     | 50 |
| <i>IN SILICO</i> STUDY OF COMPLEX FORMATION OF CHEMICALLY<br>MODIFIED NUCLEIC BASES<br>Obernikhina N.V., Kachkovsky O.D., Brovarets V.S                                                                         | 51 |
| INFLUENCE OF CAFETERIA DIET ON LEVEL OF LIPID PEROXIDES IN<br>LIVER AND ADIPOSE TISSUE OF MICE<br>Ivanochko M.V., Bayliak M.M                                                                                   | 52 |
| A BIOMIMETIC 3D MODEL TO REPRODUCE WOUND-ASSOCIATED<br>BIOFILM-RELATED INFECTIOUS PROCESS <i>IN VITRO</i><br>Pokholenko Ia.O., Rudnieva K.L., Baranovskyi T.P., Potochilova V.V., Iungin<br>O.S., Moshynets O.V | 53 |
| STUDY ON UBIQUITINATION OF DELETION MUTANTS OF MRPS18-2 IN<br>MAMMALIAN CELLS<br>Kulahina Y.S., Kovalevska L.M., Shcherbina V.M., Kashuba E.V                                                                   | 54 |
| ENDOCYTIC PROTEINS ITSN1/2 FORM A COMPLEX WITH TAU<br>Gerasymchuk D.O., Gryaznova T.A., Popova O.O., Martsyshevska I.V,<br>Rynditch A.V                                                                         | 55 |

# *IN SILICO* STUDY OF COMPLEX FORMATION OF CHEMICALLY MODIFIED NUCLEIC BASES

#### Obernikhina N.V.<sup>1</sup>, Kachkovsky O.D.<sup>2</sup>, Brovarets V.S.<sup>2</sup>

<sup>1</sup>Department of Medical Biochemistry and Molecular Biology, Bogomolets National Medical University, Kyiv, Ukraine

<sup>2</sup>Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine

nataliya.obernikhina@gmail.com

Aim. To study *in silico* in a fragment-to-fragment approach the possibility of the formation of stable [Het-BioM]-complexes with chemically modified nucleic bases by the  $\pi$ -stack mechanism and due to hydrogen bonding [HB]-complex.

**Methods.** The main characteristics of the electron structure of the studied compounds were calculated by DFT [wB97XD/6-31G(d.p.)] method (package GAUSSIAN 09).

Results. The introduction of fluorine in position 5 of uracil almost does not affect its affinity, does not change the nature of the S0-S1 transition, on the contrary, and reduces the S0-S2 transition energy (0.2 eV), increasing the possibility of [Het-BioM] complex formation by the  $\pi$ -stack mechanism and thymidylate synthase is blocked. The replacement of the fluorine atom by the chlorine atom in the uracil molecule (3) led to a change in the nature of the S0-S1 transition (n-pi\* changed to pi-pi) and a decrease in the energy of this transition to 0.34 eV. Therefore, such a compound is primarily focused on the [Het-BioM] complex formation by the  $\pi$ -stack mechanism. The introduction of the electron-accepting sulfo group in position 5 of uracil (2) increases its electron-accepting properties without changing the nature of the S0-S1 transition (n-pi), increasing the probability of overlap of electron density with the second component of the [HB]-complex by 8 times. The S0-S2 (pi-pi\*), transition energy remains approximately the same as in compound 1. Although the acceptor atoms of fluorine and chlorine have an inverse effect on the basicity of uracil, fluorine slightly increases the stability of the complex at 1.8 kcal/mol, and sulfo group stabilizes [HB]-complex at 2.5 kcal/mol. It can be assumed that such a replacement in the uracil molecule will have better therapeutic properties in the fight against cancer. The introduction of chlorine into the uracil molecule shows the low energy of stabilization of the [HB]-complex at 6.1 kcal/mol, because such a replacement will change the nature of the first electronic transition in molecule 3, and change the probable mechanism of complexation.

**Conclusions.** Thus, a detailed *in silico* study in the fragment-to-fragment approach shows that nitrogen  $\pi$ -conjugate molecules can form stable [Het-BioM] complexes with nucleic bases through  $\pi$ -stack interaction, as well as due to hydrogen bonding between LEP in twocoordinated nitrogen atom and proton of the functional groups of the nucleic bases. The possibility of complex formation by different mechanisms depends on the following quantum-chemical descriptors: parameter  $\varphi_0$  of both components, as well as on the nature of their first electronic transitions. The introduction in the uracil of the acceptor sulfo group stabilizes the [HB]-complex at 2.5 kcal/mol, and the introduction of the chlorine atom at the same position changes the nature of the S0-S1, S0-S2 electron transitions so that such a molecule is characterized by the formation of a [ $\pi$ , $\pi$ ]-complex instead of [HB]-complex.

| Moldovan L.V.     | 79              |
|-------------------|-----------------|
| Moshynets O.V.    | 22, 53, 61, 118 |
| Moskalov V.B.     | 71              |
| Mruga D.O.        | 131             |
| Muzalov I.I.      | 75              |
| Nardid O.A.       | 30, 46, 96      |
| Narozhnyi S.V.    | 30, 46, 96      |
| Naumenko Y.O.     | 30              |
| Nefodova A.V.     | 132             |
| Nemtinov P.I.     | 70              |
| Nevelchuk S.O.    | 60, 124         |
| Nicitenko A.M.    | 56              |
| Nidoeva Z.M.      | 143             |
| Nifantova S.M.    | 23              |
| Nikitina N.S.     | 133             |
| Nikulina V.V.     | 70              |
| Nimko Kh.I.       | 28              |
| Nipot O.E.        | 112             |
| Nizheradze K.O.   | 32              |
| Nykolaichuk I.M.  | 94, 138         |
| Oberniak A.       | 118             |
| Obernikhina N.V.  | 51              |
| Okunev O.V.       | 141             |
| Oleksyk O.O.      | 36              |
| Oleksyk T.K.      | 36              |
| Olifirov B.O.     | 60, 124         |
| Onishchenko A.I.  | 47, 102         |
| Orlova N.V.       | 112             |
| Papuga O.Ye.      | 133, 143        |
| Pashevin D.O.     | 87              |
| Pashynska V.A.    | 66, 144         |
| Pasichnichenko M. | 132             |
| Pavliuk O.V.      | 108             |
| Pavlovych S.I.    | 106             |
| Petakh P.V.       | 73              |