Causes and Risk Factors of Cerebral Ischemic Events in Patients With Atrial Fibrillation Treated With Non–Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention

The RENo Study

Maurizio Paciaroni, MD; Giancarlo Agnelli, MD; Valeria Caso, PhD; Giorgio Silvestrelli, PhD; David Julian Seiffge, MD; Stefan Engelter, MD; Gian Marco De Marchis, MD, MSc; Alexandros Polymeris, MD; Maria Luisa Zedde, MD; Shadi Yaghi, MD; Patrik Michel, MD; Ashraf Eskandari, MD; Kateryna Antonenko, MD; Sung-Il Sohn, MD; Manuel Cappellari, MD; Tiziana Tassinari, MD; Rossana Tassi, MD; Luca Masotti, MD; Aristeidis H. Katsanos, MD; Sotirios Giannopoulos, MD; Monica Acciarresi, MD; Andrea Alberti, MD; Michele Venti, PhD; Maria Giulia Mosconi, MD; Maria Cristina Vedovati, MD; Patrizia Pierini, MD; Michela Giustozzi, MD; Enrico Maria Lotti, MD; George Ntaios, MD; Odysseas Kargiatis, MD; Serena Monaco, MD; Piergiorgio Lochner, MD; Fabio Bandini, MD; Chrysoula Liantinioti, MD; Lina Palaidiomou, MD; Azmil H. Abdul-Rahim, MD; Kennedy Lees, MD; Michelangelo Mancuso, MD; Leonardo Pantoni, MD; Silvia Rosa, MD; Pierluigi Bertora, MD; Silvia Galliazzo, MD; Walter Ageno, MD; Elisabetta Toso, MD; Filippo Angelini, MD; Alberto Chiti, MD; Giovanni Orlandi, MD; Licia Denti, MD; Yurif Flomin, MD; Simona Marcheselli, MD; Nicola Mummol, MD; Alexandra Rimoldi, MD; Elena Verrengia, MD; Erika Schirinzi, MD; Massimo Del Sette, MD; Panagiotis Papamichalis, MD; Apostolos Komnios, MD; Nemanja Popovic, MD; Marija Zarkov, MD; Alessandro Rocco, MD; Marina Diomedi, MD; Elisa Giorli, MD; Alfonso Ciccone, MD; Brian C. Mac Grory, MD; Karen L. Furie, MD; Bruno Bonetti, MD; Valentina Saia, MD; Francesca Guideri, MD; Maurizio Acampa, MD; Giuseppe Martini, MD; Elisa Grifoni, MD; Marina Padroni, MD; Efstathia Karagkiozi, MD; Kalliopi Perlepe, MD; Konstantinos Makaris, MD; Marina Mannino, MD; Miriam Maccarrone, MD; Leonardo Ulivi, MD; Nicola Giannini, MD; Elena Ferrari, MD; Alessandro Pezzini, MD; Boris Doronin, MD; Vera Volodina, MD; Antoniò Baldi, MD; Cataldo D’Amore, MD; Dirk Deleu, MD; Francesco Corea, MD; Jukka Putaala, MD; Paola Santalucia, MD; Katiucia Nardi, MD; Angela Risitano, MD; Danilo Toni, PhD; Georgios Tsivgoulis, MD

DOI: 10.1161/STROKEAHA.119.025350

Stroke is available at https://www.ahajournals.org/journal/str

© 2019 American Heart Association, Inc.
Background and Purpose—Despite treatment with oral anticoagulants, patients with nonvalvular atrial fibrillation (AF) may experience ischemic cerebrovascular events. The aims of this case-control study in patients with AF were to identify the pathogenesis of and the risk factors for cerebrovascular ischemic events occurring during non–vitamin K antagonist oral anticoagulants (NOACs) therapy for stroke prevention.

Methods—Cases were consecutive patients with AF who had acute cerebrovascular ischemic events during NOAC treatment. Controls were consecutive patients with AF who did not have cerebrovascular events during NOACs treatment.

Results—Overall, 713 cases (641 ischemic strokes and 72 transient ischemic attacks; median age, 80.0 years; interquartile range, 12; median National Institutes of Health Stroke Scale on admission, 6.0; interquartile range, 10) and 700 controls (median age, 72.0 years; interquartile range, 8) were included in the study. Recurrent stroke was classified as cardioembolic in 455 cases (63.9%) according to the A-S-C-O-D (A, atherosclerosis; S, small vessel disease; C, cardiac pathology; O, other causes; D, dissection) classification. On multivariable analysis, off-label low dose of NOACs (odds ratio [OR], 3.18; 95% CI, 1.95–5.85), atrial enlargement (OR, 6.64; 95% CI, 4.63–9.52), hyperlipidemia (OR, 2.40; 95% CI, 1.83–3.16), andCHA2DS2-VASc score (OR, 1.72 for each point increase; 95% CI, 1.58–1.88) were associated with ischemic events. Among the CHA2DS2-VASc components, age was older and presence of diabetes mellitus, congestive heart failure, and history of stroke or transient ischemic attack more common in patients who had acute cerebrovascular ischemic events. Paroxysmal AF was inversely associated with ischemic events (OR, 0.45; 95% CI, 0.33–0.61).

Conclusions—In patients with AF treated with NOACs who had a cerebrovascular event, mostly but not exclusively of cardioembolic pathogenesis, off-label low dose, atrial enlargement, hyperlipidemia, and high CHA2DS2-VASc score were associated with increased risk of cerebrovascular events. (Stroke. 2019;50:00:00-00. DOI: 10.1161/STROKEAHA.119.025350.)

Key Words: atrial fibrillation ■ humans ■ prevention and control ■ risk factors ■ stroke

Clinical trials on the prevention of stroke in patients with atrial fibrillation (AF) have consistently shown a benefit associated with oral anticoagulant therapy. Despite an adequate treatment with vitamin K antagonists, some patients with AF still experience ischemic cerebrovascular events.1 Non–vitamin K antagonist oral anticoagulants (NOACs) are currently recommended as the preferred anticoagulant strategy for patients with nonvalvular AF given their more favorable risk-benefit profiles over warfarin.2

The aims of this multicenter case-control study in patients with AF on NOACs for stroke prevention were to identify the pathogenesis of and the risk factors for cerebrovascular ischemic events, which occurred during therapy with NOACs.

Methods

The data that support the findings of this study are available from the corresponding author on reasonable request.

RENò (Causes and Risk Factors of Cerebral Ischemic Events in Patients With Nonvalvular AF Treated With NOACs for Stroke Prevention) was a multicenter unmatched case-control study performed between January 2016 and June 2018. Consecutive patients with AF who experienced an acute ischemic stroke and who were prescribed NOACs (dabigatran, apixaban, rivaroxaban, or edoxaban) for stroke prevention were included in the study. These patients, identified as cases, were enrolled in 37 Stroke Units across Europe, North America, and Asia. Controls were patients with AF who had been taking NOACs for stroke prevention for >1 month and did not experience cerebrovascular events after the initiation of anticoagulant therapy. Controls were consecutive outpatients attending 4 European Anticoagulant Therapy Services (Torino [358 patients], Perugia [190 patients], Varese [94 patients], and Kyiv [46 patients]) and 3 Stroke Unit follow-up services (12 patients).

Cases who had suspended anticoagulant therapy at least 24 hours before the cerebrovascular event for any reason and patients who did not guarantee compliance were excluded. To verify compliance, the patients and family members were asked how the prescribed anticoagulant was taken.

The study was approved by the pertinent institutional review boards, if required. Informed consent was obtained from all patients.

Risk Factors

For cases and controls, data on known stroke risk factors were collected as following: age, sex, history of hypertension (blood pressure >140/90 mm Hg at least twice before acute stroke or already under treatment with antihypertensive drugs), history of diabetes mellitus (fasting glucose level >126 mg/dL preprandial on 2 examinations, University of Parma, Italy (L.D.); Stroke and Neurorehabilitation Unit, MC Universal Clinic Oberig, Kyiv, Ukraine (Y.F.); Neurologia d’urgenza e Stroke Unit, Istituto Clinico Humanitas, Rozzano, Milano, Italy (S.M.); Department of Internal Medicine, Magenta Hospital, Italy (N.M., A.R., E.V.); Struttura Complessa di Neurologia, Ente Ospedaliero Ospedali Galliera, Genoa, Italy (E.S., M.D.S.); Internist-Intensive Care Specialist, Intensive Care Unit, General Hospital of Larissa, Greece (P.P., A.K.); Clinic of Neurology, Clinical Center Vojvodina, University of Novi Sad, Serbia (N.P., M.Z.); Stroke Unit, Department of Systems Medicine, University of Tor Vergata, Rome, Italy (A.R., M.D.); Stroke Unit, Department of Neurology, Sant’Andrea Hospital, La Spezia, Italy (E. Giorli); Division of Stroke and Cerebrovascular Diseases, Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI (B.C.M.G., K.L.F.); Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Italy (A. Pozzini); Municipal Budgetary Healthcare Institution of Novosibirsk, City Clinical Hospital No. 1, Novosibirsk State Medical University, Russia (B.D., V.V.); Stroke Unit, Ospedale di Portogruaro, Venice, Italy (A.B., C.D.); Neurology, Hamad Medical Corporation, Doha, Qatar (D.D.); Unità Organica Gravi Cerebrolesioni, San Giovanni Battista Hospital, Foligno, Italy (F.C.); Department of Neurology, Helsinki University Hospital, Finland (J.P.); Neurologia, Ospedale di Macerata, Italy (R.V.); Department of Neurology and Psychiatry, Sapienza University of Rome, Italy (A.R., D.T.); and Department of Neurology, University of Tennessee Health Science Center, Memphis (G.T.).

Guest Editor for this article was Jeffrey L. Saver, MD.

Correspondence to Maurizio Paciaroni, MD, Stroke Unit and Division of Internal and Cardiovascular Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Perugia, Italy. Email maurizio.paciaroni@unipg.it

Downloaded from http://ahajournals.org by on July 21, 2019
glucose level >200 mg/dL, postprandial, or glycohemoglobin >6.5%, or under antidiabetic treatment), current cigarette smoking, hyperlipidemia (total cholesterol >200 mg/dL or triglyceride >140 mg/dL, or already under lipid-lowering therapy), history of symptomatic ischemic heart disease (myocardial infarction, history of angina or previous diagnosis of multiple lesions on thallium heart isotope scan, or evidence of coronary disease on coronary angiography), history of symptomatic peripheral artery disease (intermittent claudication of presumed atherosclerotic origin, or ankle/arm systolic blood pressure ratio <0.85 in either leg at rest, or history of intermittent claudication with previous leg amputation, reconstructive surgery, or angioplasty), alcohol abuse (>30 g per week), obesity (body mass index >30 kg/m²), or previous stroke/transient ischemic attack. Likewise, baseline variables were obtained for all patients including creatinine clearance (calculated by Cockcroft-Gault equation), type, and duration of NOAC treatment. The doses of NOACs were recorded, and the reasons for prescribing low doses were also collected. Low doses of NOACs were considered off label in the absence of the recommended clinical and laboratory criteria for dose reduction. Low dose of dabigatran was considered as labeled for elderly patients (age ≥80 years), patients with moderate renal impairment (creatinine clearance, 30–49 mL/min), and those with concomitant use of interacting drugs (e.g., verapamil). Low dose of rivaroxaban was considered as labeled for patients with moderate or severe renal impairment (creatinine clearance, 15–49 mL/min). Low-dose apixaban was considered as labeled in patients with moderate or severe renal impairment (creatinine clearance, 15–49 mL/min), in those with concomitant use of interacting drugs and in those with a weight ≤60 kg.

Nonvalvular AF was classified as (1) paroxysmal: associated with episodes terminating spontaneously within 7 days; (2) persistent: associated with episodes lasting >7 days or requiring pharmacological or electrical cardioversion; (3) permanent: persisting for >1 year, either because cardioversion failed or was not pursued. For the purpose of the present study, AF was classified into 2 types: paroxysmal or sustained (persistent or permanent).

For cases, the CHA₂DS₂-VASc score (2 points for history of stroke or age >75 years and 1 point each for congestive heart failure, hypertension, diabetes mellitus, vascular disease, age between 65 and 74 years, and female sex) was calculated before the cerebrovascular event. For controls, the CHA₂DS₂-VASc score was calculated at the time of anticoagulant therapy initiation. A transthoracic echocardiogram was performed within 7 days from stroke onset in cases and during follow-up in controls by a local cardiologist using a standardized protocol. Patients were imaged in the left lateral decubitus. Images were obtained using a 3.5-MHz transducer, at a depth of 16 cm in the parasternal (standard long- and short-axis images) and apical views (standard long-axis and 4-chamber images). Standard 2-dimensional and color Doppler data, triggered to the QRS complex, were saved in cine loop format. Pulsed and continuous wave Doppler data were also stored digitally. Left atrial enlargement was defined following the American Society of Echocardiography guidelines and the European Association of Echocardiography.

Characteristics of Patients With Acute Stroke or Transient Ischemic Attack During NOAC Treatment

On admission, in all cases with acute ischemic stroke or transient ischemic attack, stroke severity was assessed using the National Institutes of Health Stroke Scale. A noncontrast cerebral computed tomography or cerebral magnetic resonance imaging scan was performed on admission in all patients to exclude intracranial hemorrhage. All patients underwent angio-computed tomography or magnetic resonance imaging scan to assess intracranial stenosis and an ultrasonography examination of the carotid and vertebral arteries. Occlusion of an artery in the territory of the infarct was defined as an absence of flow and the presence of a visible plaque. For the latter, the occlusion was considered to be atherosclerotic.

For the causes of stroke, the A-S-C-O-D (A, atherosclerosis; S, small vessel disease; C, cardiac pathology; O, other causes; D, dissection) classification was used. A-S-C-O-D phenotyping assigns a degree of likelihood of causal relationship to every potential disease (1 for potentially causal, 2 for causality is uncertain, 3 for unlikely causal but the disease is present, 0 for the absence of disease, and 9 for insufficient workup to rule out the disease) commonly encountered in ischemic stroke describing all underlying diseases in every patient.

White matter changes (leukoaraiosis defined on the first computed tomographic [or magnetic resonance] examination as ill-defined and moderately hypodense [or hyperintensity on T2 weighted on magnetic resonance] areas >5 mm according to published criteria) were investigated. Leukoaraiosis in the deep white matter was dichotomized into absent versus present.

Statistical Analysis

The aims of the unmatched analyses were to identify predictors of ischemic events. Univariate tests (χ² test or Fisher exact test with Yate correction when appropriate) were used to compare patients with ischemic events (cases) with controls, regarding risk factors for stroke. Multivariable logistic regression analysis was performed to identify independent predictors for ischemic events. The variables included in this latter analysis were CHA₂DS₂-VASc score (separately as a continuous variable or including the risk factors within the score excluding the CHA₂DS₂-VASc score), hyperlipidemia, alcohol abuse, paroxysmal AF, atrial enlargement, and dose of NOACs. The variables low dose and off-label low dose were inserted into the multivariable model separately. Moreover, a sensitivity analysis after matching for age was performed.

Data were analyzed with the SPSS/PC Win package 25.0.

Sample Size Calculation

For this unmatched case-control study, it was assumed that at least 15% of controls would have had the risk factor with the lower incidence. To detect a minimum odds ratio (OR) of 1.5 with a power of 80% and an alpha risk of 5%, it was calculated that a total of 1308 patients would have been needed (ratio of controls/cases, 1:1). For this unmatched case-control study, it was assumed that at least 15% of controls would have had the risk factor with the lower incidence. To detect a minimum odds ratio (OR) of 1.5 with a power of 80% and an alpha risk of 5%, it was calculated that a total of 1308 patients would have been needed (ratio of controls/cases, 1:1). For this unmatched case-control study, it was assumed that at least 15% of controls would have had the risk factor with the lower incidence. To detect a minimum odds ratio (OR) of 1.5 with a power of 80% and an alpha risk of 5%, it was calculated that a total of 1308 patients would have been needed (ratio of controls/cases, 1:1). For this unmatched case-control study, it was assumed that at least 15% of controls would have had the risk factor with the lower incidence. To detect a minimum odds ratio (OR) of 1.5 with a power of 80% and an alpha risk of 5%, it was calculated that a total of 1308 patients would have been needed (ratio of controls/cases, 1:1).

Results

Characteristics and Causes of Cerebrovascular Events Occurring During Anticoagulant Therapy

During the study period, 713 consecutive patients on NOACs were admitted for an acute cerebrovascular event (641 ischemic strokes and 72 transient ischemic attacks). The median age of these patients was 80.0 years (interquartile range, 12), and median National Institutes of Health Stroke Scale on admission was 6.0 (interquartile range, 10). Atherosclerotic lesions were detected in 420 patients (58.9%): extracranial internal carotid artery stenosis 30% to 49% in 190 (26.6%), intracranial internal carotid artery stenosis ≥50% in 95 (13.3%), vertebral/basilar artery stenosis ≥50% in 33 (4.6%), intracranial stenosis in the anterior circulation 30% to 49% in 26 (3.6%), intracranial stenosis in the anterior circulation ≥50% in 41 (5.7%), and stenosis in >1 location in 38 patients (5.3%). Leukoaraiosis was found in 404 patients (56.7%). The index event occurred after an average of 14.4 months from initiation of NOACs.

Concerning the causes of the index events, 455 (63.9%) were considered cardioembolic strokes, according to A-S-C-O-D classification (Table 1).

Predictors of Cerebrovascular Ischemic Events During Anticoagulant Therapy

The 713 cases were compared with a control group of 700 controls (median age, 72.0 years; interquartile range, 8). The
characteristics of cases and controls are summarized in Table 2.

On univariable analysis, cases with ischemic events were older, had a higher prevalence of vascular risk factors, and had atrial enlargement on transthoracic echocardiogram. Among the cases, 317 (44.5%) were treated with low doses of NOACs compared with 207 (29.6%) controls. Of the 317 cases treated with low doses, 111 (35.0%) were treated with off-label low doses compared with 53 of the 207 controls (27.5%) treated with off-label low dose.

Of the 111 cases treated with off-label low dose, 38 were treated with low dose because of fear of bleeding, 10 had history of bleeding, 7 were prescribed concomitant antplatelet therapy, and 46 for other causes (cost of the drug, recurrent falls, amyloid angiopathy, anemia, history of cancer, age, misinterpretation of the patient, preference of the patient, gastrointestinal discomfort, and hypertension); in 10 patients, the cause remains unknown. Of the 53 controls treated with off-label low dose, 6 were treated with off-label low dose because of fear of bleeding, 10 had history of bleeding, 6 were prescribed concomitant antiplatelet therapy, and 31 for other causes (recurrent falls, amyloid angiopathy, anemia, history of tumor, age, misinterpretation of the patient, preference of the patient, gastrointestinal discomfort, and hypertension).

The results of multivariable and the sensitivity analyses are reported in Table 3. Patients treated with off-label low doses and the presence of atrial enlargement, especially when severe, had a higher risk of ischemic events (OR, 3.18; 95% CI, 1.95–5.85; \(P = 0.0001\) and OR, 6.64; 95% CI, 4.63–9.52, \(P = 0.0001\), respectively). Additionally, CHA2DS2-VASc score was associated with the occurrence of ischemic events (OR, 1.72 for each point increase; 95% CI, 1.58–1.88; \(P = 0.0001\)).

The characteristics of the patients with cerebrovascular events treated with low doses are summarized in Table 4. On multivariable analysis, CHA2DS2-VASc score was associated with prescription of low-dose NOACs (OR, 1.35 for each point increase; 95% CI, 1.20–1.52; \(P = 0.0001\)). Low clearance of creatinine was associated with prescription of low-dose NOACs (OR, 0.98 for 1 mL/min increase; 95% CI, 0.97–0.99; \(P = 0.001\)).

Discussion

This unmatched case-control study showed that the main risk factor associated with an increased risk of ischemic cerebrovascular events was the administration of a low dose of NOACs. Specifically, 45% of the patients with ischemic events had been prescribed reduced doses of NOACs, and about 35% of these had been prescribed reduced off-label doses. The prescription of low dose was associated with higher CHA2DS2-VASc score. The ORBIT II AF study (Outcome Registry for Better Informed Treatment of Atrial Fibrillation) reported that 1 in 7 patients treated with a NOAC were prescribed a reduced dose of NOACs. Notably, more than half of the NOAC reductions were inconsistent with Food and Drug Administration or European Medicines Agency labeling and
appeared to be unexplainably in patients with lower bleeding risk. In unadjusted analyses, patients receiving reduced NOAC doses had high crude adverse event rates, particularly those who should have received standard NOAC dosing. Although these results were consistent in adjusted analyses, the differences were not statistically significant.

In the RENo study, about 30% of the patients with cerebrovascular events had stroke due to causes other than cardioembolism. Indeed, ischemic stroke in patients with AF is not thought to be exclusively cardiogenic. For this reason, in patients with stroke during anticoagulation therapy, the first step should be to confirm the pathogenesis of the new event that more than often requires adjustments of the original treatment strategy.

The presence of hyperlipidemia and the type of AF were independently associated with risks of cerebrovascular events in this study. Currently, these 2 variables are not represented in any international guideline risk scores for stroke in patients with AF. Therefore, it is plausible that by adding these 2 variables to currently used scores, better predictions of risk could be obtained.

The RENo study has the following limitations: (1) it was observational, and neither individual NOAC or their doses were randomized; (2) other pharmacological treatments besides NOACs were not investigated. Interactions between NOACs and other drugs are reported to be much lower than that of warfarin. Specifically, all currently available NOACs are substrates of the P-glycoprotein transporter, one-third of rivaroxaban is metabolized by the liver via CYP3A4/CYP3A5 and CYP2J2-dependent pathways, and apixaban, which has predominant nonrenal clearance, is eliminated via the CYP3A4-, CYP1A2-, and CYP2J2-dependent pathways. Therefore, it is plausible that drug interactions may have interfered with the anticoagulant effect; (3) we excluded patients who could not guarantee adherence to the prescribed treatment regimen. As this information was provided by the patients themselves or the caregiver, a laboratory assessment of the anticoagulant status during the event might have been informative; (4) we did not collect data regarding any possible off-label overdose of NOACs, which has been reported in literature to be about 3%; (5) the bleeding risk of the patients included in the RENo study remained unknown; (6) cases were collected from a number of Stroke Units in Europe, United States, and Asia. Unfortunately, not all participating Stroke Units have an associated anticoagulant unit where the cases could have been collected. For this reason, we collected control data in 7 centers, all except one, associated to a Stroke Unit.

The strengths of our study include its adequate sample size and its prospective design. Additionally, our analyses reflect real-life experiences and thus may provide valuable information.
that could significantly reduce the incidence of ischemic events in patients with AF and stroke during NOAC therapy.

Conclusions

In patients with AF treated with NOACs who had a cerebrovascular event, mostly but not exclusively of cardioembolic pathogenesis, off-label low dose, atrial enlargement, hyperlipidemia, and high CHA2DS2-VASc score were associated with increased risk of cerebrovascular events.

Sources of Funding

None.

Disclosures

Dr Paciaroni received honoraria as a member of the speaker bureau of Aspen, Sanofi-Aventis, Boehringer Ingelheim, Bayer, Bristol-Myers Squibb, Daiichi Sankyo, and Pfizer. Dr Agnelli received honoraria as a member of the speaker bureau of Boehringer Ingelheim, Bayer, Daiichi Sankyo, and Pfizer. Dr Paciaroni received honoraria as a member of speaker bureau from Boehringer Ingelheim, Bayer, Pfizer, and Daiichi Sankyo. He received consultant honoraria as advisory board member of Boehringer Ingelheim, Pfizer, Bristol-Myers Squibb, Daiichi Sankyo, and Bayer. The other authors report no conflicts.

References

10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al; Chamber Quantification Writing Group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463. doi:10.1016/j.echo.2005.10.005

