Ei= :
computation
v~ x R

Article

Numerical Simulation of Cytokinesis Hydrodynamics

Andriy A. Avramenko !, Igor V. Shevchuk *{, Andrii I. Tyrinov

check for
updates
Academic Editor: Sergey A.

Karabasov

Received: 29 May 2025
Revised: 24 June 2025
Accepted: 4 July 2025
Published: 8 July 2025

Citation: Avramenko, A.A.;
Shevchuk, I.V,; Tyrinov, A.L;
Dzevulska, I.V. Numerical Simulation
of Cytokinesis Hydrodynamics.
Computation 2025,13,163. https://
doi.org/10.3390/ computation13070163

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

1© and Iryna V. Dzevulska 3

Institute of Engineering Thermophysics, National Academy of Sciences, 03057 Kiev, Ukraine;
tgetu.ittf@gmail.com (A.A.A.)

Faculty of Computer Science and Engineering Science, TH Koln—University of Applied Sciences,
51643 Gummersbach, Germany

Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University,
01601 Kiev, Ukraine; dzevulska@gmail.com

Correspondence: igor_v.shevchuk@th-koeln.de

Abstract

A hydrodynamic homogeneous model has been developed for the motion of mutually
impenetrable viscoelastic non-Newtonian fluids taking into account surface tension forces.
Based on this model, numerical simulations of cytokinesis hydrodynamics were performed.
The cytoplasm is considered a non-Newtonian viscoelastic fluid. The model allows for
the calculation of the formation and rupture of the intercellular bridge. Results from an
analytical analysis shed light on the influence of the viscoelastic fluid’s relaxation time on
cytokinesis dynamics. A comparison of numerical simulation results and experimental
data showed satisfactory agreement.

Keywords: cytokinesis; numerical modeling; hydrodynamics; non-Newtonian viscoelastic
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1. Introduction

Cytokinesis is not just the final stage of cell division, but a fundamental process that
ensures proper reproduction, growth, and maintenance of tissue, genetic stability, and
development of multicellular organisms. Disturbances in this process can lead to various
pathologies, including cancer and developmental defects. The article [1] is devoted to
modeling cell cytokinesis while taking morphology into account. It describes a three-
dimensional (3D) fluid flow model of eukaryotic cell cytokinesis. The active force of
actomyosin along the cytokinetic ring is modeled by the surface force, while the cell
morphology is tracked using the phase field model.

A model that can explain the location of furrows in very large cells is proposed in [2].
The model correctly predicts the location and appearance of furrows in two experiments in
which the cell shape is changed to an hourglass or cylindrical shape before division. These
results are consistent with theories of equatorial stimulation, but are inconsistent with
models that require differential stimulation of the polar regions of the cell without furrows.

In ref. [3], it was shown that during cytokinesis, contractility factors accumulate
near the furrow in adjacent cells. Increased stiffness in neighboring cells slows down
furrow formation, while increased contractility in one or both neighboring cells either
slows down furrow formation or induces cytokinetic failure. Computational modeling
confirms these findings and provides additional insight into the mechanics of the epithelium
during cytokinesis.

In ref. [4], a novel unfitted finite element framework is presented for modeling coupled
surface and bulk problems in time-dependent domains, focusing on fluid—fluid interactions
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in animal cells between the actomyosin cortex and the cytoplasm. This approach ensures
accurate and stable simulations on fixed Cartesian grids.

An important point for modern biotechnology is the understanding of bioconvection
processes [5,6], processes occurring in neural systems [7-10], and processes occurring
during cell division. The final stage of cell division, when the bridge connecting two
daughter cells thins and breaks, is called cytokinesis. Experimental data indicate that
cytokinesis disorders lead to multiple intercellular bridges and multinuclear cells [11] and
threaten their genomic and cellular integrity. The appearance of such “defective” cells can
cause, for example, oncological diseases.

Fluid flow modeling during cytokinesis using a one-dimensional model was per-
formed in [12].

Theoretical and numerical study of mass transfer can serve as a guide for experi-
mentalists regarding the values of those properties that should be measured in order to
provide more accurate answers to questions regarding the dynamics of cell cytokinesis. The
connection between defective cytokinesis and various diseases provides a strong incentive
for research in this area.

In this paper, numerical and analytical modeling of fluid flow modeling during
cytokinesis is performed without taking into account the internal structure of the cell.

2. Statement of the Problem

For the first time, a combination of the VOF (Volume of Fluid) method with the
Oldroyd-B non-Newtonian fluid model is proposed for modeling intracellular hydrody-
namics. The model can be used to assess the nature of cytokinesis without considering the
influence of the cell’s internal elements.

The physical statement of the problem and the schematic of the computational do-
main are shown in Figure 1. Two mutually penetrating spherical drops of cytoplasm
(non-Newtonian fluid) are located in the external environment. The dimensions of the com-
putational domain were 30-10~® x 8-10~® m. The radii R of the drops at the initial moment
are equal to 4-107° m. At the initial moment of time, the initial volumes of liquid move
as follows: volume 2 is stationary, and volumes 1 and 3 move in opposite directions with
the same velocity v, equal to 1.2:10~% m/s along the axis of symmetry z. The remaining
regions have zero velocity.

Figure 1. Computational domain for modeling of cytokinesis.

Numerical calculations were performed in an axisymmetric statement for a non-
Newtonian viscoelastic fluid. The VOF (Volume of Fluid) model was used, in which the
liquids are mutually non-penetrating. This model takes into account the surface tension
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forces at the interface between the liquids. The equations for momentum transfer and
continuity in the axial (z) and radial (r) directions for this model are as follows [13]

%(sz) + %%(T’PVsz) + %%(TPVer) = aafg + %a@( z) + %%(YTZV) + F,
@(pvr) + %ai(rpvzvr) + %%(rerVr) = aiJ + %a@( rz) + %%(T’Tﬂ) +F, )

+ apvZ apv, + pv —0.

The relation between the stress and strain rate tensors for a non-Newtonian fluid is as
follows (Oldroyd-B model) [14]:

LI, (D+’ya£>, )

ot
T — {Tzz Tzr } 3)
Trz  Trr

Tensor D has the following form

where T is the stress tensor,

ov 1(ov ov
zVr = z2vz + zVr
D=4 7 . ( ) 4)
vy vy v,
W% %) %
The density p in Equation (1) is calculated using the following equation
P = @202 + (1 = 2)p1, ®)

where @1 are @; are the volume fractions of the external environment and cytoplasm in the
computational cell, p, is the cytoplasm density, and p; is the external environment density.

To compare the numerical results with the experimental data, the parameters of
cytoplasm from [11] were used in the numerical modeling (see Table 1).

Table 1. Parameters of cytoplasm.

Cytoplasm density 1000 kg /m3
Cytoplasm viscosity 350 Pa-s
Cytoplasm relaxation time 28 s

Speed of movement of the spherical part of the cell 1.2.107° m/s

The VOF model used is based on the assumption that the phases under study (in this
case, the cell cytoplasm and the external environment) do not interpenetrate. A variable is
introduced into the model, which represents the volume fraction of the cytoplasm in the
computational cell. In each cell, the sum of the volume fractions of the cytoplasm and the
external environment is equal to one. Thus, the values of the variables in any cell determine
the current amount of cytoplasm depending on its volume value.

The interface between the cytoplasm and the external environment is determined in
accordance with the solution of the continuity equations for the volume fractions of the
cytoplasm ¢ and the external environment ¢. These equations have the following form:

a<p1 +v-grad(pq1) =0,
a(‘)z +v-grad(gy) =0, (6)
¢>1 +e2=1
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Here, F, and F, in Equation (1) are the axial and radial components of the force,
respectively, taking into account the surface tension [15]

pk grad (¢ )
3(p1+p2)

F= (7)
where o is the surface tension at the interface between the cytoplasm and the external
environment, and the curvature of the interface k is determined as follows [15]

k=div(n),n |Z—| n = grad(@z). ®)

The following boundary conditions were used in the modeling:

e At the boundaries parallel to the axis of symmetry: p = putm; v, = 0;
e At the boundaries perpendicular to the axis of symmetry: p = pusm; ve = 0.

The initial configuration of the cytoplasm is specified in the description of the problem
statement. The working pressure is taken to be equal to one atmosphere.

Calculations of stress tensors and strain rates for a non-Newtonian fluid according to
Equations (2)—(4) were implemented in the form of UDFs (user-defined functions).

The time step of the model was 10~1° s.
Numerical simulations were performed using ANSYS Fluent 6.0.

3. Results of Numerical Modeling

The shape of the cytoplasm surface obtained during modeling for different moments
in time is presented in Figure 2.

o o—o
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16s 112s

Figure 2. Results of numerical modeling of the cytokinesis process for different moments in time.

When regions 1 and 3 diverge (Figure 1), the diameter of region 2 decreases under
the action of the surface tension force. In this case, an intercellular bridge is formed.
With further divergence, the resulting bridge lengthens and becomes thinner. Up to time
t = 60 s, the diameter of the intercellular bridge varies significantly in length. The minimum
diameter at this time is located in its middle. At subsequent times, the shape of the bridge
becomes almost cylindrical along its entire length. The rate of thinning decreases as the
bridge diameter decreases. Having reached the minimum critical diameter (at the time
t =112 's), the bridge connecting the diverging regions breaks. Subsequently, the remains of
the bridge are drawn into the formed volumes under the action of the surface tension force.

Based on the results of numerical studies, the dependences of the diameter and length
of the intercellular bridge on time are plotted in Figure 3. The same figure shows the
experimental dependences from [11]. The figure shows good agreement between the
numerical and experimental results. The calculated and experimental data show that the
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length and diameter of the intercellular bridge change according to a law that is close

to linear.

1mensions, pLm

D

0 20 40 60 80 100 120
Time, s
Figure 3. Dependences of the diameter and length of the intercellular bridge on time: 1—diameter [11];

2—length [11]; 3—diameter (calculation); 4—length (calculation).

4. Analytic Analysis
For an approximate qualitative analysis, we consider Equation (2) as an unsteady
differential equation with respect to the stress tensor. In this case, we will consider the

strain rate tensor as a given function of time

iT T D
dt+;‘(D+ dt) F(b). 9)

The initial condition for this equation is
T=0 ITpu t=0. (10)

For the analytical solution of this equation, we use the method of separation of
functions, i.e., we will look for a solution in the following form

T(t) =u-w. (11)
Substituting Equation (9) into Equation (11) yields

du dw uw du dw
ZUE +u E + 7 E +u <dt + ) f(t) (12)

Since the functions 1 and w are arbitrary, they can be chosen so that the coefficient at u

equals to zero. From here, we have

o
dt

ool

=0. (13)

) (14)

-
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Next, we substitute Equation (14) into Equation (12) and integrate. This gives

u

/t £(t) exp <i> dt+C, (15)
0

where C is the integration constant.
The final solution for the stress tensor is

T:exp(—D /t'f(t)exp<;>dt+c . (16)
0

Let us consider two special cases. The first one is when the deformation rates increase

according to a linear law
D=A-t, (17)

where A is a constant.
Substitution of Equation (17) into Equation (16) yields the law of variation of stresses

over time
T1 =1+ (g—1)(1 —exp(—7)), (18)
where
_ T _r ot
Tl_ml g_A/ T—/\' (19)

Analysis of Equation (18) shows that the behavior of function T1 depends on the sign
of the value ¢ — 1. If, i.e,, when vy > A, at small values of 7, a sharp increase in stress is
observed (curve 4 on Figure 4); that is, the convexity of the curve is directed upward. This
is due to the rapid increase in the deformation rate. Under the condition y < A, the opposite
picture is observed (curve 2 on Figure 4). However, at large values of T, regardless of the
value of the parameter g, the increase in stress is linear. In the case of g = 1, it follows from
Equation (18) that the process of cytokinesis obeys a linear law, as shown in curve 3 on
Figure 3. As was said above, according to [15] the values of the parameters y and A tend to
equality. Therefore, it is obvious that the most probable scenario of cytokinesis is described
by Equation (18) under the condition g — 1, i.e., it is linear.

4 -

0 0.5 1 1.5 2 2.5 3

Figure 4. Variation of the stress tensor in time (curves (18) and (20)): 1—Heaviside function (20); 2—y
<A (18); 3—g =1 (18); 4—y > A (18).
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The second case is when the deformation rates emerges as a Heaviside function H(t),
i.e., instantly,
D=A-H(t). (20)
At the same time,

dD

where §(t) is the Dirac delta function. In this case, solution (15) takes the following form

T, = H(r) + exp(—7)[(g — 1)H(x) — gH(0)] @1)
where T
T, = A (22)

This dependence is also shown in Figure 4 (curve 1). There is a linear section of
increasing stress, after which an asymptote close to the horizontal line appears. Therefore,
Equation (21) can describe cytokinesis at an early stage.

5. Conclusions

A homogeneous model of mutually non-penetrating fluids was proposed for the
numerical simulation of cytokinesis hydrodynamics, which takes into account surface
tension forces at their interface. A viscoelastic non-Newtonian fluid model was used to
determine closure relations. This model allows us to trace the formation and rupture of the
intercellular bridge that forms during cytokinesis.

Comparison of the numerical simulation results and experimental data [11] showed
their satisfactory agreement. This indicates that the model used adequately describes fluid
flow during cytokinesis. The differences in the size of the intercellular bridge at the initial
time points are explained by the difference in the initial configuration of the cytoplasm
from the real shape of the cell during cytokinesis.

Computational and experimental data show that the length and diameter of the
intercellular bridge vary according to a law close to linear, although the properties of the
cytoplasm differ from a linear law.

Comparison of numerical and analytical calculations shows that the most probable
scenario of cytokinesis can be described by the Oldroyd-B model under the condition
g — 1. In this case, the diameter and length of the intercellular bridge change according to
a law close to linear, which corresponds to the conclusion of [15].

In the future, we plan to conduct numerical studies of cytokinesis using other nonlinear
models of viscoelastic non-Newtonian fluid.
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Abbreviation
@ Volume fraction;
D Strain rate tensor;
k Surface curvature;
n Normal to the surface;
p Pressure;
t Time;
Vy, Vg Velocity components;
7,z Coordinates;
F.,F, Components of surface tension forces;
0% Relaxation time for the strain tensor;
A Relaxation time of the stress tensor;
v Dynamic viscosity;
P Density;
o Surface tension;
T Stress.
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