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Abstract. Prediction of the toxicity of chemical compounds is one of the most im-
portant steps in drug design. The use of phenolic compounds is a promising compo-
nent in the pharmaceutical industry with many possible applications. The paper fo-
cuses on the application of a probabilistic neural network for classifying 232 phenols 
based on their mechanisms of toxic action. The Kruskal–Wallis test was also used to 
assess the influence of molecular descriptors on the reliable classification of pheno-
lic compounds based on the mechanisms of their toxic action. It is shown that for the 
correct training of a probabilistic neural network and effective prediction of the 
mechanisms of toxic action of phenols, it is sufficient to use only 5 molecular de-
scriptors.  
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INTRODUCTION  

Assessment of the toxicity of chemical compounds is an important and necessary 
stage on the way to the creation of new medicines. It is known that the experi-
mental study of only one type of toxicity is an expensive and long-term process. 
Phenolic compounds have a number of useful properties that make them interest-
ing for pharmacy: antioxidant, anti-inflammatory, antimicrobial properties, anti-
cancer activities, etc. Additionally, phenolic compounds are often found in natural 
sources, such as plants, which adds to their appeal for use in pharmacy [1–4]. 

Overall, the diverse range of beneficial properties exhibited by phenolic 
compounds makes them valuable compounds in pharmacy and medicine, with 
potential applications in the treatment and prevention of various diseases. But be-
fore using phenols in pharmacy, it is important to predict possible mechanisms of 
their toxic action (polar narcotics, weak acid respiratory uncouplers, pro-
electrophiles and soft electrophiles). This helps to identify risks to people and to 
take measures to reduce the possible negative consequences, that is, to develop 
safe medicines [5; 6]. 

Chemometric methods use mathematical and statistical models to analyze 
complex data sets and extract meaningful information, making them valuable 
tools in pharmaceutical research and development. Chemometric methods, in par-
ticular artificial neural networks, are widely used for prediction and classification 
tasks in pharmacy. Artificial neural networks are computational models inspired 
by the structure and functioning of biological neural networks in the human brain. 
These methods can help predict various properties of pharmaceutical compounds, 
such as their stability, toxicity, solubility and bioavailability. They are also used 
for identifying different types of drugs or distinguishing between counterfeit and 
authentic products [7–10].  
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MATERIALS AND METHODS 

Data Set 

The studied dataset consists of a training, testing and validation sub-sets with a 
total of 232 phenolic compounds: training sub-set – 197 phenols, testing sub-set – 
20 phenols, validation sub-set – 15 phenols. All phenolic compounds were charac-
terized by seven physical-chemical descriptors: 1) distribution coefficient; 2) en-
ergy of the lowest unoccupied molecular orbital; 3) molecular weight; 4) nega-
tively charged molecular surface area in percent’s; 5) sum of absolute charges on 
nitrogen and oxygen atoms in a molecule; 6) largest positive charge on a hydrogen 
atom; 7) electrotopological state index for the hydroxyl group. Values of these 
descriptors and toxicity values were taken from [6].  

Distribution of the studied phenolic compounds into classes according to the 
mechanisms of toxic action of phenolic compounds to Tetrahymena pyriformis is 
presented in Table 1. The most numerous class is class 1 of polar narcotics 
(71.6% of all studied phenolic compounds), other classes are almost the same in 
number of samples.  

T a b l e  1 .  Distribution of the studied phenolic compounds into classes accord-
ing to the mechanisms of toxic action to Tetrahymena pyriformis 

Number of Phenolic Compounds 
Classes According to Mechanisms  

of Toxic Action Training 
sub-set 

Testing 
sub-set 

Validation  
sub-set 

Total 

Class 1. Polar narcotics 138 16 12 166 

Class 2. Weak acid respiratory uncouplers 15 1 1 17 

Class 3. Pro-electrophiles 22 2 0 24 

Class 4. Soft electrophiles 22 1 2 25 
 

Applied Methods 

The software package Matlab R2023b (trial individual license 11937601) was 
used in the present work for realization Kruskal–Wallis test and probabilistic neu-
ral network [11].  

The Kruskal–Wallis test is a non-parametric statistical test used to determine 
whether there are statistically significant differences between two or more groups 
of a dependent variable [12].  

A probabilistic neural network is a type of artificial neural network, which 
consists of following layers: input layer, pattern layer, summation layer, and out-
put layer. A brief overview of how probabilistic neural network works [13–15]: 

 input layer receives the input pattern; 
 neurons of pattern layer store the training patterns; 
 summation layer computes the similarity between the input pattern and 

the stored patterns using Gaussian function; 
 output layer produces the class probability estimates.  
To classify a new input pattern, the probabilistic neural network computes 

the class probabilities using the summation layer and outputs the class with the 
highest probability. 
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RESULTS AND DISCUSSION 

Definition of Informative Descriptors for Classification of Phenolic Com-
pounds into Classes According to the Mechanisms of Toxic Action  

The calculation of the Kruskal–Wallis test for 232 phenols characterized by 
7 molecular descriptors and toxicity is given in Table 2.  

T a b l e  2 .  Results of the Kruskal–Wallis test calculation for 7 descriptors and 
toxicity 
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χ2  17.80 54.32 104.90 35.78 70.24 31.71 4.34 18.56 
 

Critical value of χ2 at the significance level of 5% with 3 degrees of freedom 
is 7.82 [16]. 

It was established some dependences between studied descriptors and classi-
fication of phenolic compounds according to the mechanisms of their toxic action:  

1) descriptor largest positive charge on a hydrogen atom is not influenced on 
classification of phenolic compounds according to the mechanisms of toxic 
action, because experimental value of χ2 is less than critical value (4.34 < 7.82); 

2) descriptor energy of the lowest unoccupied molecular orbital has the 
greatest influence on the phenols classification according to the mechanisms of 
toxic action (maximum experimental value of χ2 is established for this descrip-
tor — 104.90); 

3) the studied parameters can be conventionally divided into three groups 
according to their influence on the classification of phenols: 

 weak influence: toxicity and electrotopological state index for the hy-
droxyl group; 

 moderately strong influence: molecular weight and sum of absolute 
charges on nitrogen and oxygen atoms in a molecule; 

 strong influence: distribution coefficient, energy of the lowest unoccupied 
molecular orbital and negatively charged molecular surface area in percent’s. 

Application of Probabilistic Neural Network 

In the context of the probabilistic neural network, the spread of the Gaussian 
function is an important parameter for its construction. Choosing the right spread 
parameter is crucial for the performance of the probabilistic neural network. If the 
spread is too small, the network may over fit to the training data and perform 
poorly on new data. If the spread is too large, the network may under fit and fail 
to capture the underlying patterns in the data [8; 13].  

In the present work it was investigated the applicability of probabilistic neu-
ral network at different values of the spread of the Gaussian function: 0.1; 0.2; 
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0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0. It should be noted that the probabilistic neural 
network is trained with zero error at spread values from 0.1 to 1.0 for different 
sets of descriptors. Results of prediction of the mechanisms of toxic action of 
phenols for testing and validation sub-sets are also the same for spread values 
from 0.1 to 1.0 for different sets of descriptors.  

The unreliability of the prediction was estimated as the part of incorrectly 
classified phenols of the testing or validation sub-sets in percent’s [8]: 

 %100‧
N

n
P  ,  

where n is the number of incorrectly classified phenols in the testing or validation 
sub-set; N is the total number of phenols in the testing or validation sub-set.  

Results of prediction of the mechanisms of toxic action of phenolic com-
pounds by means of probabilistic neural network based on a set of all 7 molecular 
descriptors and toxicity are shown in Table 3.  

T a b l e  3 .  Unreliability values of the prediction based on a set of all 7 molecu-
lar descriptors and toxicity 

Sub-set P, % 
Testing 10.0 

Validation 6.7 
 

Results of prediction of the mechanisms of toxic action of phenolic com-
pounds by means of probabilistic neural network based on a set of 5 molecular 
descriptors (distribution coefficient, energy of the lowest unoccupied molecular 
orbital, molecular weight, negatively charged molecular surface area in percent’s 
and sum of absolute charges on nitrogen and oxygen atoms in a molecule) are 
shown in Table 4. 

T a b l e  4 . Unreliability values of the prediction based on a set of 5 molecular 
descriptors 

Sub-set P, % 

Testing 20.0 
Validation 6.7 

 

One can see, that results of prediction of the mechanisms of toxic action of 
phenolic compounds based on a set of all 7 molecular descriptors with toxicity 
and based on a set of 5 molecular descriptors are differed by two incorrectly clas-
sified phenols. This confirms, the verity of calculation results of the Kruskal–
Wallis test: largest positive charge on a hydrogen atom, toxicity and electroto-
pological state index for the hydroxyl group are weakly influenced on assignment 
of phenols to one or another class according to mechanisms of their toxic action.  

Decreasing the number of descriptors into 3 (distribution coefficient, energy 
of the lowest unoccupied molecular orbital and negatively charged molecular sur-
face area in percent’s) resulted in an increasing the part of incorrectly classified 
phenols of the testing sub-set from 20% till 40% (Table 5). It means, that molecu-
lar weight and sum of absolute charges on nitrogen and oxygen atoms in a mole-
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cule are moderately strong influenced for classification of phenols according to 
mechanisms of their toxic action and can’t be ignore.  

T a b l e  5 . Unreliability values of the prediction based on a set of 3 molecular
descriptors 

Sub-set P, % 
Testing 40.0 

Validation 6.7 
 

Detailed information about prediction of the mechanisms of toxic action of 
phenolic compounds of testing and validation sub-sets are shown in Tables 6 and 
7, correspondingly: 1 — polar narcotics; 2 — weak acid respiratory uncouplers; 
3 — pro-electrophiles; 4 — soft electrophiles. Incorrect predictions are indicated 
in bold text.  

T a b l e  6 .  Results of prediction of the mechanisms of toxic action of phenols of
the testing sub-set 

N 
Phenol  

compound 

Predicted mech-
anism of toxic 
action using 7 

descriptors and 
toxicity (0.1 ≤ 
spread ≤ 1.0) 

Predicted 
mechanism of 

toxic action us-
ing 5 descriptors

(0.1 ≤ spread 
≤ 1.0) 

Predicted 
mechanism of 
toxic action 
using 3 de-

scriptors (0.1 ≤ 
spread ≤ 1.0) 

True 
mechanism 

of toxic  
action  
[5, 6]  

1 2-Fluorophenol 1 1 1 1 
2 2-Allylphenol 1 1 1 1 
3 3-Chlorophenol 1 1 1 1 

4 
4,6-

Dichlororesorcinol 
1 1 3 1 

5 4-Benzyloxyphenol 1 1 1 1 
6 3-Iodophenol 1 1 1 1 
7 2,3-Dichlorophenol 1 1 1 1 
8 4-Phenylphenol 1 1 1 1 
9 4-Hexyloxyphenol 1 1 3 1 

10 4-Hexylresorcinol 1 1 1 1 

11 
2,4,5-

Trichlorophenol 
1 1 1 1 

12 2,4-Diaminophenol 3 3 1 3 
13 Methylhydroquinone 3 1 1 3 
14 3-Nitrophenol 4 4 1 4 
15 4-Ethoxyphenol 1 3 3 1 

16 
4-Bromo-2,6-

dimethylphenol 
1 1 1 1 

17 4-Methoxyphenol 1 1 1 1 

18 
2,6-Diiodo-4-
nitrophenol 

1 1 4 2 

19 
2-Methyl-3-
nitrophenol 

4 4 4 1 

20 4-Isopropylphenol 1 1 1 1 
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T a b l e  7 .  Results of prediction of the mechanisms of toxic action of phenols of
the validation sub-set 

N Phenol  
compound 

Predicted mecha-
nism of toxic 
action using 7 

descriptors and 
toxicity (0.1 ≤ 
spread ≤ 1.0) 

Predicted mech-
anism of toxic 
action using 5 

descriptors 
(0.1 ≤ spread ≤ 

1.0) 

Predicted 
mechanism of 

toxic action using 
3 descriptors 
(0.1 ≤ spread  

≤ 1.0) 

True 
mecha-
nism of 
toxic ac-

tion [5, 6] 

1 4-Hydroxypropiophenone 1 1 1 1 
2 3-Hydroxybenzaldehyde 1 1 1 1 

3 4-(4-Hydroxyphenyl)- 
2-butanone 1 1 1 1 

4 4-Hydroxybenzaldehyde 1 1 1 1 
5 4-Isopropylphenol 1 1 1 1 
6 3-Fluoro-4-nitrophenol 4 4 4 4 
7 Benzyl-4-hydroxybenzoate 1 1 1 1 
8 5-Pentylresorcinol 1 1 1 1 

9 2-Hydroxy-4-
methoxyacetophenone 1 1 1 1 

10 3-Methyl-2-nitrophenol 1 1 1 1 

11 2-Ethylhexyl-4/-
hydroxybenzoate 1 1 1 1 

12 2,3-Dinitrophenol 2 2 1 2 
13 2-Nitrophenol 4 4 4 4 
14 3-Methoxyphenol 1 1 1 1 
15 4-Chlororesorcinol 3 3 1 1 

 

CONCLUSIONS 

A set of five molecular descriptors (distribution coefficient, energy of the lowest 
unoccupied molecular orbital, molecular weight, negatively charged molecular 
surface area in percent’s and sum of absolute charges on nitrogen and oxygen at-
oms in a molecule) is sufficient for correct classification of phenolic compounds 
by mechanisms their toxic effects. 

The application of probabilistic neural network provides a reliable classifica-
tion of phenolic compounds by mechanisms of their toxic action, as well as pre-
diction of the mechanisms of their toxic action with high accuracy. 

The proposed procedure for predicting the mechanisms of toxic action of 
phenolic compounds can be useful at the stage of development of medicines.  
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ПРОГНОЗУВАННЯ МЕХАНІЗМІВ ТОКСИЧНОЇ ДІЇ ФЕНОЛІВ ЗА 
ДОПОМОГОЮ ЙМОВІРНІСНОЇ НЕЙРОННОЇ МЕРЕЖІ В ПОЄДНАННІ 
З ТЕСТОМ КРАСКЕЛА–УОЛЛІСА / Я.М. Пушкарьова, Г.М. Зайцева 

Анотація. Прогнозування токсичності хімічних сполук є одним із 
найважливіших етапів розроблення лікарських засобів. Використання 
фенольних сполук є перспективним компонентом у фармацевтичній 
промисловості з багатьма можливими застосуваннями. Працю присвячено 
застосуванню ймовірнісної нейронної мережі для класифікації 232 фенолів за 
механізмами їх токсичної дії. Для встановлення впливу молекулярних 
дескрипторів на достовірну класифікацію фенольних сполук за механізмами їх 
токсичної дії використали тест Краскела–Уолліса. Показано, що для 
коректного навчання ймовірнісної нейронної мережі та ефективного 
прогнозування механізмів токсичної дії фенолів достатньо використовувати 
лише 5 молекулярних дескрипторів. 

Ключові слова: штучна нейронна мережа, класифікація, дизайн ліків, фенол, 
токсичність. 


