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INTRODUCTION 

 

Actuality. The analysis of the Biopharmaceutics Classification System 

(BCS) using chemometric methods is a highly relevant and promising research 

topic. The BCS categorizes drugs into four classes based on their solubility and 

permeability. This approach is used by regulatory authorities such as the Food and 

Drug Administration and European Medicines Agency to simplify the registration 

of generic drugs. Considering the growing market for generic drugs, optimizing the 

registration process by accurately classifying substances using BCS is becoming 

increasingly important. Chemometric methods, such as QSAR/QSPR, Principal 

Component Analysis, Partial Least Squares, and others, enable quantitative and 

qualitative assessment of drug properties based on their chemical structure. These 

methods allow for predicting the BCS class of new compounds or refining the 

classification of known drugs without conducting experimental studies. 

Automating and optimizing the classification process helps reduce costs and time 

associated with the development of new drugs. 

Additionally, the rise of personalized medicine and the need for precise drug 

formulations tailored to individual patient needs further increases the relevance of 

BCS classification. By improving the accuracy of BCS predictions, chemometric 

models can also assist in the development of drug formulations with optimal 

bioavailability for specific populations, enhancing therapeutic efficacy and safety. 

Predicting properties using chemometric models can minimize the number 

of in vitro and in vivo experiments required, streamlining the drug development 

pipeline. Due to the increasing volume of data in the pharmaceutical industry, 

chemometric methods are gaining popularity for their ability to process large 

datasets. Moreover, the integration of machine learning and artificial intelligence 

in chemometrics opens up new avenues for refining predictive accuracy and 

uncovering previously unknown patterns in drug properties. This combination is 

expected to further accelerate drug discovery, reduce costs, and enhance the 

precision of bioavailability predictions. 
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Furthermore, as regulatory bodies are increasingly emphasizing the 

importance of early-stage in silico predictions in drug approval processes, 

chemometric methods aligned with BCS provide a valuable tool for regulatory 

compliance. Combining BCS with chemometric methods creates new opportunities 

for predicting bioavailability and developing pharmaceuticals, making the topic 

highly relevant in both research and practical applications. This integration has the 

potential to transform drug development, ensuring that safe, effective, and 

accessible medications reach patients faster and more efficiently. 

Aim and tasks of research. The aim of this study is to develop an accurate 

drug classification model according to the Biopharmaceutics Classification System 

using chemometric methods.  

Tasks of research: 

− calculate molecular descriptors using software ChemOffiсe for 122 drug 

compounds; 

− identify sufficient descriptors for accurate drug classification according to 

the Biopharmaceutics Classification System using the Kruskal-Wallis test; 

− to optimize the architecture of a Probabilistic Neural Network for accurate 

drug classification according to the Biopharmaceutics Classification System; 

− predict the BCS class for 23 compounds that have been assigned to 

multiple BCS classes in different scientific articles. 

Research methods: Kruskal-Wallis test, Probabilistic Neural Network.  

The software package MATLAB R2024b and ChemOffice 2020 (trial 

license) were used in this work. 

Novelty and significance of the results. The novelty of this study lies in the 

application of advanced chemometric methods, particularly the use of a 

Probabilistic Neural Network, for the accurate classification of drugs according to 

the Biopharmaceutics Classification System. Unlike traditional methods, this 

approach integrates molecular descriptors that are computationally derived, 

allowing for a more efficient and reliable drug classification process. The research 

identifies four key descriptors (number of HBond donors, partition coefficient, 
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solubility, and polar surface area) that are sufficient for accurate classification, 

which has not been extensively explored in the context of Biopharmaceutics 

Classification System. 

The significance of the results is twofold: 

1. Practical application: the developed model provides an efficient tool for 

drug developers and pharmaceutical researchers to predict the BCS class of a 

compound, potentially accelerating the drug development process by streamlining 

the identification of compounds with optimal bioavailability profiles. 

2. Scientific contribution: the study advances the use of chemometric 

techniques in pharmaceutical sciences, demonstrating their potential to improve 

predictive models for drug classification. This can have broader applications in 

other areas of pharmaceutical research, such as Quantitative Structure-Activity 

Relationship modeling and drug formulation. 

Overall, the study contributes to the field by offering a robust, data-driven 

method for BCS classification, which could aid in the development of more 

effective drug therapies. 

Approbation of research results. The results of this work were presented at 

Scientific and Practical Conference «Innovations in medicine and pharmacy: 

contribution of young scientists», February 28, 2025, Kyiv, Bogomolets National 

Medical University.  

Publications. Abstract of report: Sedat Acik, Yaroslava Pushkarova. 

Analysis of Biopharmaceuticals classification system by means of chemometric 

methods. Scientific and Practical Conference «Innovations in medicine and 

pharmacy: contribution of young scientists», February 28, 2025, Kyiv. Ukrainian 

scientific medical youth journal, 2025, Supplement 1 (153), P. 162.  

Structure of work: 41 pages, 2 sections, supplementary information, 44 

references.  
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MAIN PART 

 

1. LITERATURE REVIEW 

 

1.1. Biopharmaceutics Classification System: the main principles 

 

Formulators often prefer oral administration as a method of drug delivery, 

and it remains the most prevalent approach within the field of drug delivery 

technologies. Despite its widespread use, this route faces challenges related to 

absorption and bioavailability within the gastrointestinal tract. When an oral 

dosage form is administered, the drug is released, dissolving in the surrounding 

gastrointestinal fluid to form a solution. This dissolution process is constrained by 

the drug’s solubility. Once the drug is dissolved in a liquid medium, it can traverse 

the cellular membranes lining the gastrointestinal tract. However, this stage of the 

process is limited by the drug’s permeability. Following this, the drug is absorbed 

into systemic circulation. In essence, the bioavailability and absorption of an orally 

administered drug are largely influenced by the drug’s solubility and permeability 

characteristics. 

The Biopharmaceutics Classification System provides a systematic, 

scientifically grounded approach to categorizing drug substances based on their 

aqueous solubility in relation to dose and their intestinal permeability. By also 

considering the dissolution of the dosage form, the BCS evaluates three crucial 

factors that regulate the rate and extent of drug absorption from solid oral dosage 

forms: dissolution, solubilization, and intestinal permeability [1-4]. 

The Biopharmaceutics Classification System is a scientifically established 

model used to categorize Active Pharmaceutical Ingredient substances according to 

their aqueous solubility and intestinal permeability characteristics. The concept of 

the BCS was introduced by Amidon and his colleagues, who based it on a diagram 

illustrating the relationship between solubility and permeability. This foundational 
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idea led to the proposal of waiving in vivo bioequivalence studies for specific oral 

immediate-release formulations. 

The BCS principle put forward the notion of eliminating the need for in vivo 

bioequivalence studies for certain immediate-release formulations, offering a more 

efficient approach to assessing bioequivalence. The BCS has gained international 

recognition among technical industries, academic institutions, and regulatory 

authorities. The core concept of the BCS is that if two pharmaceutical products 

exhibit the same concentration profile throughout the gastrointestinal tract, they 

will produce identical plasma concentration profiles after oral administration. This 

relationship can be mathematically represented and analyzed [5-7]. 

The Biopharmaceutics Classification System is based on three fundamental 

principles: solubility, permeability, and dissolution. These principles are essential 

for the accurate classification of drugs within the BCS framework. 

Solubility: A drug substance is considered highly soluble if its highest dose 

strength can dissolve in 250 mL or less of water across a pH range of 1 to 7.5 at a 

temperature of 37 °C. 

Permeability: A drug is deemed highly permeable when the extent of its 

absorption in humans exceeds 90% of the administered dose, as determined by a 

mass-balance method or by comparison with a reference intravenous dose. 

Dissolution: A drug substance is classified as rapidly dissolving if at least 

85% of the given amount of the drug dissolves within 30 minutes when tested 

using USP Apparatus 1 or 2 in a buffer solution volume not exceeding 900 mL. 

These principles facilitate the reliable determination of a drug’s BCS 

classification, allowing for streamlined bioequivalence assessments and regulatory 

decisions [8-12]. 

According to the Biopharmaceutics Classification System, drugs are 

categorized into four distinct classes based on their intestinal permeability and 

solubility characteristics. This classification is grounded in fundamental principles 

such as solubility, dissolution, and permeability, all of which significantly 

influence the absorption process. Among these classes, Class I substances exhibit 
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the highest absorption rates due to their favorable properties. In contrast, Class II 

drugs have limited solubility, which can affect their absorption. Class III drugs are 

characterized by limited permeability, while Class IV drugs demonstrate poor 

absorption due to both low solubility and low permeability [13]. 

The classification can be summarized as follows: 

 Class I: High Solubility – High Permeability 

 Class II: Low Solubility – High Permeability 

 Class III: High Solubility – Low Permeability 

 Class IV: Low Solubility – Low Permeability 

 

1.2. Chemometric methods: the main methods, their tasks and using 

 

Chemometrics is a scientific discipline that leverages mathematical and 

statistical techniques to create or choose the most effective measurement 

procedures and experimental designs. Its primary goal is to enhance both the 

quality and quantity of chemical information derived from chemical data. This 

interdisciplinary field merges chemistry, mathematics, and computer science to 

extract valuable insights from chemical datasets. Chemometrics utilizes 

multivariate analysis, pattern recognition, data mining, and other computational 

methods to address challenges in chemistry and associated domains. 

Chemometrics can be described as the application of statistical techniques to 

chemical analysis data, aiming to deepen the understanding of chemical systems. 

One of its key aspects is the extraction of chemical information from collected 

data, which often originates from analytical instruments. 

In practice, chemometrics involves the use of statistical models to analyze 

data, identify patterns, and make reliable predictions. It is widely applied in areas 

like spectroscopy, chromatography, and process control, enabling the optimization 

of experimental conditions and improvement of analytical accuracy while 

simultaneously reducing both analysis time and associated costs. 
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In the realm of analytical chemistry, chemometrics proves invaluable as it 

facilitates the extraction of meaningful information from extensive and complex 

datasets, thus supporting more informed decision-making. It plays a crucial role in 

quality control, method development, and the discovery of new chemical 

knowledge [14-17]. 

Principal Component Analysis is a widely utilized chemometric technique 

aimed at data simplification. It transforms the original data into a new set of 

variables known as principal components, which are orthogonal and uncorrelated 

with each other. 

The primary objective of Principal Component Analysis is dimensionality 

reduction, which helps decrease the number of variables within a data set while 

preserving as much variability as possible. This method is especially valuable for 

researchers when identifying patterns and visualizing data, as it aids in recognizing 

underlying structures. 

Principal Component Analysis is commonly employed for exploratory data 

analysis to reduce data complexity and reveal hidden patterns within the data [18, 

19]. 

Partial Least Squares Regression is considered one of the most significant 

methods in chemometrics, used to model the relationship between input and output 

variables. This technique is particularly advantageous when dealing with datasets 

containing numerous predictors that are often highly collinear. 

The primary purpose of Partial Least Squares Regression is to construct a 

predictive model that effectively represents the relationships among variables. It is 

extensively applied in Quantitative Structure-Activity Relationship modeling to 

estimate activity based on molecular structure. Additionally, Partial Least Squares 

Regression is frequently employed in spectroscopy for analyzing spectral data [20, 

21].  

Multivariate Curve Resolution is a method utilized to decompose complex 

datasets into the spectra and concentrations of pure components. The main 

objective of Multivariate Curve Resolution is to break down intricate mixtures into 



11 

individual components, making it especially valuable for analyzing spectroscopic 

data. In the field of food science, Multivariate Curve Resolution is commonly 

applied to identify and examine composite mixtures of food ingredients. This 

method offers valuable insights into the composition of complex mixtures, proving 

essential in a wide range of analytical applications [22, 23].  

Artificial Neural Networks are computational models inspired by the 

structure and function of the human brain, designed to aid in modeling, pattern 

recognition, and classification tasks. Artificial Neural Networks are particularly 

effective when dealing with non-linear relationships and handling complex 

datasets. Their primary function is pattern recognition, allowing the detection of 

intricate patterns within data. Additionally, Artificial Neural Network algorithms 

can perform classification tasks. 

In chemometrics, Artificial Neural Networks are utilized for analyzing 

complex data, proving useful in various applications such as spectroscopy, process 

analysis, control, and multivariate calibration. Their ability to model complex 

relationships and make accurate predictions makes them highly valuable in 

chemometric analysis.  

Artificial Neural Networks are computational frameworks that mimic brain-

like neural networks, facilitating learning processes. These networks consist of 

interconnected artificial neurons that work together to process information in a 

connectionist manner. Artificial Neural Networks are specifically designed to 

identify patterns and acquire knowledge from data. They function similarly to the 

human brain, aiding in information processing by learning from experience, 

making decisions, and recognizing complex patterns. Their approach to 

connectionist computing is instrumental in interpreting and analyzing complex 

information [24-26]. 

Among the various architectures of Artificial Neural Networks, the 

Feedforward Neural Network stands out as the simplest type, designed for specific 

problem types. In this model, data flows in a single direction, moving from input to 

output without any feedback loops. Due to their straightforward structure, 
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Feedforward Neural Networks are well-suited for tasks such as image 

classification and pattern recognition. 

Convolutional Neural Networks are specialized neural networks structured 

to process data with a grid-like topology, such as images. They employ 

convolutional layers to autonomously learn spatial feature hierarchies, making 

them particularly effective in image and video recognition, object detection, and 

segmentation tasks. 

Recurrent Neural Networks are designed to handle sequential data and tasks 

where the current output depends on previous inputs. Their unique architecture 

includes directed cycles, allowing them to maintain a memory of prior information. 

This characteristic makes Recurrent Neural Networks especially useful in 

applications like time-series forecasting and natural language processing, where 

context from past data is essential [27]. 

Types of learning process [24-27]: 

− supervised learning: in this approach, the data is labeled, meaning that the 

input-output pairs are known. The primary goal is to learn the relationship between 

inputs and their corresponding outputs while minimizing the error when outputs 

overlap. 

− unsupervised learning: in this type of learning, the network independently 

identifies patterns and structures within the data. It is useful for tasks such as 

clustering, dimensionality reduction, and error detection. 

− reinforcement learning: the network learns by interacting with an 

environment to obtain feedback in the form of rewards or punishments. This 

feedback guides the network towards making better decisions over time. 

− backpropagation: this algorithm is widely used for training artificial neural 

networks. It calculates the gradient of the loss function concerning each weight by 

applying the chain rule. The weights are then adjusted in the opposite direction of 

the gradient to reduce the loss.  
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Conclusions to section 1 

The Biopharmaceutics Classification System is a framework used to classify 

drugs based on their solubility and intestinal permeability. It plays a crucial role in 

drug development, guiding the formulation and regulatory approval processes. 

Chemometric methods are essential tools in modern chemistry and related 

fields, providing robust techniques for analyzing complex chemical data. The 

primary aim of chemometrics is to extract useful information from experimental 

data using mathematical and statistical methods. 
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2. EXPERIMENTAL PART 

 

2.1. Data set 

 

Studied data set included 122 drug compounds. They form training sub-set 

for developing the classification model according to the Biopharmaceutics 

Classification System. 

For each drug compound we have calculated 11 physical-chemical and 

topological descriptors by means of ChemOffice software [28]: 

1) molecular weight (MW); 

2) number of HBond acceptors (HBA); 

3) number of HBond donors (HBD); 

4) molar refractivity (MR); 

5) partition coefficient (logP); 

6) solubility (logS); 

7) Balaban index (BI); 

8) molecular topological index (MTI); 

9) number of rotatable bonds (RotB); 

10) polar surface area (PSA); 

11) Wiener index (WI).  

List of 122 drug compounds, their classification according to the 

Biopharmaceutics Classification System, values of eleven molecular descriptors 

are presented in Table 2.1.  

Short description of each class of drugs according to the Biopharmaceutics 

Classification System [29-33]: 

− BCS Class I drug substances dissolve quickly in aqueous media, which 

positively impacts their bioavailability. These substances have high solubility and 

are easily absorbed from the gastrointestinal tract, allowing them to quickly enter 

the systemic circulation from the site of administration. The rapid absorption of 

these substances is crucial for their effectiveness. For drug substances in this class, 
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simple formulations with immediate release are generally sufficient due to their 

high solubility and permeability. Examples of this class include capsules and 

tablets with a low content of excipients. 

− BCS Class II drug substances have limited solubility in water but are 

effectively absorbed in the gastrointestinal tract. This means that although these 

drugs are not easily dissolved or solubilized in aqueous environments, they are still 

well absorbed when ingested. The relationship between solubility and absorption 

significantly impacts the bioavailability of these compounds, which in turn 

determines their therapeutic effectiveness. For Class II drugs, the primary focus is 

on improving solubility. Techniques such as solid dispersions, micronization, and 

nanosizing are utilized, along with solubilizing agents like cyclodextrins and 

surfactants. Furthermore, lipid-based formulations can also enhance the 

bioavailability of these drugs. Examples of such formulations include self-

emulsifying drug delivery systems and self-microemulsifying drug delivery 

systems. 

− BCS Class III drug substances are characterized by their high solubility in 

the gastrointestinal tract. However, despite their ability to dissolve easily in 

aqueous environments, these substances face challenges related to absorption. 

Although they have excellent solubility, they do not efficiently permeate the 

intestinal membranes to enter systemic circulation. To improve the bioavailability 

of Class III drugs, various strategies are employed, particularly the use of 

permeability enhancers to facilitate better absorption. A common approach 

involves the use of surfactants as permeation enhancers. These surfactants increase 

drug permeability by interacting with cell membranes, making it easier for the drug 

to pass through the gastrointestinal tract. 

− BCS Class IV drug substances are characterized by both poor solubility 

and poor absorption in the gastrointestinal tract. These substances generally have 

limited dissolution in aqueous environments and are not easily permeable through 

the gastrointestinal tract membranes. As a result, Class IV drugs have significant 

limitations in terms of effectiveness. To address these challenges related to 
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solubility and permeability, various enhancement techniques are employed, such as 

solid dispersions and nanosizing. These methods increase the surface area of the 

drug, which helps improve its dissolution in biological media. Other strategies 

include the use of nanoparticles, liposomes, and targeted drug delivery systems, all 

of which aim to improve the bioavailability of these drugs. 
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Table 2.1. List of 122 drug compounds and values of their eleven molecular descriptors 

№ Drug compound 

BCS

Class 

[34] 

Descriptor 

MW HBA HBD MR logP logS BI MTI RotB PSA WI 

1 Amlodipine 1 408,879 5 2 10,865 1,840 -3,675 981585 12808 10 99,88 1836 

2 Bisoprolol 1 325,449 5 2 9,235 2,198 -2,293 861539 12108 12 59,95 1650 

3 Donepezil 1 379,500 4 0 11,121 3,600 -4,609 801263 17668 6 38,77 2333 

4 Doxazosin 1 451,483 9 1 12,039 2,096 -4,628 1433183 25474 5 111,21 3556 

5 Doxepin 1 279,383 2 0 8,841 3,983 -4,310 210631 6973 3 12,47 882 

6 Enalapril 1 376,453 4 2 10,155 2,046 -3,044 989295 14260 11 95,94 1982 

7 Ephedrine 1 165,236 2 2 5,066 1,390 -1,434 28816 1604 3 32,26 202 

8 Ergonovine 1 325,412 4 3 9,454 0,902 -2,696 323993 9446 4 64,60 1263 

9 Ethynyl estradiol 1 296,410 2 2 8,753 4,192 -4,393 204957 7264 1 40,46 941 

10 Ethosuximide 1 141,170 2 1 3,687 0,080 -0,644 10689 812 1 46,17 108 

11 Fluoxetine 1 309,332 5 1 8,087 4,616 -4,707 383228 7877 7 21,26 1148 

12 Glucose 1 180,156 6 5 3,761 -3,292 1,990 53802 1252 5 118,22 206 

13 Imipramine 1 280,415 2 0 9,006 3,952 -4,339 210631 7074 4 6,48 882 

14 Ketorolac 1 255,273 3 1 6,995 2,118 -3,048 136862 5117 3 57,61 693 

15 Labetalol 1 328,412 4 4 9,526 2,524 -3,708 636957 11893 8 95,58 1607 
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16 Levodopa 1 197,190 4 4 4,944 -1,757 0,161 62340 2160 3 103,78 321 

17 Lomefloxacin 1 351,354 7 2 8,869 2,840 -4,333 454900 9316 3 72,88 1362 

18 Loratadine 1 382,888 2 0 10,835 3,827 -5,250 567281 12972 3 41,90 1772 

19 Metoprolol 1 267,369 4 2 7,691 1,643 -1,819 322987 6707 9 50,72 906 

20 Metronidazole 1 171,156 4 1 4,063 -0,123 -0,748 27473 1288 3 87,64 193 

21 Mirtazapine 1 265,360 3 0 8,154 2,934 -3,735 125403 5476 0 18,84 687 

22 Nicotinamide 1 122,127 2 1 3,346 -0,341 -0,479 7074 679 1 55,45 88 

23 Norethisterone 1 298,426 2 1 8,780 3,140 -3,597 204957 7264 1 37,30 941 

24 Ondansetron 1 293,370 4 0 8,641 2,508 -3,966 217302 7706 2 35,91 997 

25 Phenobarbital 1 232,239 3 2 6,139 1,327 -2,589 92531 3322 2 75,27 458 

26 Phenylalanine 1 165,192 2 2 4,638 -1,371 0,316 30269 1573 3 63,32 212 

27 Prednisolone 1 360,450 5 3 9,840 1,009 -2,525 425311 10240 2 94,83 1425 

28 Primaquine 1 259,353 4 2 7,839 2,082 -2,935 181736 5550 6 59,64 726 

29 Proguanil 1 253,734 5 3 7,140 1,872 -3,281 173976 4376 4 88,79 608 

30 Propranolol 1 259,349 3 2 7,834 3,041 -3,174 198625 6105 6 41,49 792 

31 Pyridoxine 1 169,180 4 3 4,328 -0,518 -0,211 26520 1314 2 73,05 186 

32 Quinapril 1 438,524 4 2 12,203 3,139 -4,375 1650793 22541 11 95,94 3064 

33 Quinidine 1 324,424 4 1 9,562 2,584 -3,400 330149 9833 4 45,06 1286 
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34 Ramipril 1 416,518 4 2 11,369 2,796 -3,815 1210619 18586 11 95,94 2546 

35 Riboflavin 1 376,369 8 5 9,505 -1,874 -1,091 658031 11526 5 155,05 1698 

36 Salbutamol 1 239,315 4 4 6,763 1,443 -1,881 160268 4090 5 72,72 560 

37 Salicylic acid 1 138,122 2 2 3,494 2,208 -2,133 11308 822 1 57,53 114 

38 Sertraline 1 306,230 1 1 8,693 5,114 -5,534 167768 5628 2 12,03 770 

39 Sildenafil 1 474,580 8 1 12,585 1,544 -4,491 1451240 22672 7 106,91 3086 

40 Sotalol 1 272,363 4 3 7,234 1,079 -2,399 226065 5254 6 78,43 706 

41 Terbinafin 1 291,438 1 0 9,771 5,917 -5,550 425236 10280 6 3,24 1273 

42 Theophylline 1 180,167 4 1 4,527 -0,746 -0,783 25429 1509 0 65,01 211 

43 Timolol 1 316,420 7 2 8,197 1,309 -2,271 324259 7477 7 78,68 1063 

44 Tramadol 1 263,381 3 1 7,824 2,379 -2,578 167956 5141 4 32,70 670 

45 Venlafaxine 1 277,408 3 1 8,288 2,741 -2,860 219265 6061 5 32,70 792 

46 Zidovudine 1 267,245 6 2 6,356 -0,884 -1,192 175676 4676 3 127,63 701 

47 Zolpidem 1 307,397 3 0 9,293 2,263 -3,652 323265 8804 4 35,91 1137 

48 Azithromycin 2 748,996 13 5 19,727 1,985 -4,083 13032353 65841 7 180,08 9356 

49 Celecoxib 2 381,373 7 1 9,145 3,832 -5,812 595269 11379 4 75,76 1654 

50 Cisapride 2 465,950 7 2 12,232 3,271 -5,132 1915042 24586 10 86,05 3560 

51 Clopidogrel 2 321,819 2 0 8,663 2,510 -3,598 207525 6212 4 29,54 867 
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52 Danazol 2 337,463 3 1 9,795 4,188 -4,664 311044 9947 1 41,82 1299 

53 Diflunisal 2 250,201 4 2 6,037 4,471 -4,734 134867 3924 2 57,53 597 

54 Dipyridamole 2 504,636 12 4 13,613 1,449 -3,733 2027221 25976 12 143,32 3652 

55 Fenoprofen 2 242,274 2 1 6,933 3,148 -3,145 146840 4864 4 46,53 650 

56 Flurbiprofen 2 244,265 2 1 6,796 3,761 -3,871 141234 4581 3 37,30 626 

57 Glipizide 2 445,538 6 3 11,752 3,693 -5,980 1735550 25212 10 129,09 3430 

58 Ibuprofen 2 206,285 1 1 6,124 3,646 -3,119 89861 3076 4 37,30 404 

59 Indomethacin 2 357,790 3 1 9,505 3,350 -4,590 474843 9936 5 66,84 1424 

60 Irbesartan 2 428,540 6 1 12,314 4,730 -6,568 1188964 23576 7 81,78 3125 

61 Itraconazole 2 705,641 10 0 18,815 6,527 -9,752 8072800 85682 11 98,04 12096 

62 Ketoconazole 2 531,434 7 0 13,892 4,063 -6,421 2228313 32881 8 66,84 4692 

63 Lansoprazole 2 369,362 8 1 8,789 1,493 -4,141 545169 10846 6 63,05 1631 

64 Lorazepam 2 321,157 3 2 8,297 3,479 -4,796 196116 5637 1 61,69 819 

65 Lovastatin 2 404,547 3 1 11,256 4,440 -4,789 999139 16462 7 72,83 2246 

66 Mefenamic acid 2 241,290 2 2 7,149 3,994 -4,347 136170 4586 3 49,33 602 

67 Montelukast 2 586,187 3 2 17,462 7,861 -9,013 3867382 46793 12 69,89 6351 

68 Nalidixic acid 2 232,239 4 1 6,212 2,173 -2,882 94940 3397 2 69,97 470 

69 Naproxen 2 230,263 2 1 6,574 2,829 -3,008 106914 3894 3 46,53 530 



21 

70 Nevirapine 2 266,304 4 1 7,555 2,468 -3,696 123447 5188 1 57,06 676 

71 Nitrofurantoin 2 238,159 5 1 5,496 -0,095 -1,682 117288 3681 3 122,81 580 

72 Ofloxacin 2 361,373 7 1 9,293 2,210 -3,848 442670 10338 2 73,32 1484 

73 Oxaprozin 2 293,322 3 1 8,294 3,613 -4,230 277217 7923 5 58,89 1063 

74 Phenazopyridine 2 213,244 5 2 6,742 2,687 -3,827 87196 3711 2 89,12 485 

75 Phenytoin 2 252,273 2 2 7,223 2,252 -3,487 121875 4679 2 58,20 617 

76 Raloxifene 2 473,587 5 2 13,605 5,162 -6,877 1633844 28431 7 70,00 3843 

77 Rifampicin 2 822,953 14 6 22,008 2,414 -7,100 17103588 98085 5 220,15 13890 

78 Risperidone 2 410,493 6 0 11,277 2,426 -4,609 941544 20311 4 57,50 2793 

79 Rofecoxib 2 314,355 3 0 8,225 3,190 -4,713 277278 7984 3 60,44 1061 

80 Simvastatin 2 418,574 3 1 11,720 4,649 -4,963 1159529 17942 7 72,83 2440 

81 Sulfamethoxazole 2 253,276 5 2 6,276 0,690 -2,829 108079 3926 3 93,78 535 

82 Sulindac 2 356,411 3 1 9,878 3,504 -5,585 506021 10917 4 54,37 1517 

83 Tamoxifen 2 371,524 2 0 12,070 7,076 -7,047 887252 16848 8 12,47 2141 

84 Tolmetin 2 257,289 3 1 7,173 2,622 -3,268 184391 5410 4 57,61 736 

85 Acebutolol 3 336,432 5 3 9,369 1,678 -2,589 891316 11420 11 87,66 1568 

86 Alendronic acid 3 249,096 4 6 4,748 -2,802 1,075 101097 1756 5 161,31 281 

87 Allopurinol 3 136,114 4 2 3,386 -0,485 -0,796 7659 777 0 65,85 105 
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88 Ascorbic acid 3 176,124 5 4 3,635 -0,626 -0,294 26787 1156 2 107,22 188 

89 Atenolol 3 266,341 4 3 7,478 0,460 -1,497 317560 6458 8 84,58 890 

90 Biperiden 3 311,469 2 1 9,610 4,034 -4,300 270410 9078 5 23,47 1142 

91 Cefaclor 3 367,804 4 3 9,223 0,406 -2,826 427499 9309 5 112,73 1383 

92 Cefazolin 3 454,498 9 2 10,791 -0,844 -2,986 904654 16087 8 151,75 2468 

93 Chloramphenicol 3 323,126 4 3 7,313 0,669 -2,133 348207 5269 7 121,37 880 

94 Cimetidine 3 252,340 6 3 6,903 1,140 -2,483 190251 4813 8 84,60 664 

95 Codeine 3 299,370 4 1 8,347 1,087 -2,144 155703 6202 1 41,93 824 

96 Colchicine 3 399,443 6 1 10,859 1,510 -3,370 864522 13802 6 83,09 1944 

97 Didanosine 3 236,231 6 2 5,834 -0,103 -1,451 80271 3497 2 86,52 502 

98 Ergocalciferol 3 396,659 1 1 12,987 7,154 -6,555 1078625 19222 5 20,23 2428 

99 Ergotamine 3 581,673 7 3 16,105 2,053 -5,556 2932081 45947 5 114,45 6191 

100 Fexofenadine 3 501,667 4 3 14,891 5,597 -6,603 3058708 39158 10 81,00 5214 

101 Folinic acid 3 473,446 9 7 11,744 -1,582 -2,962 2501834 27473 11 215,55 4127 

102 Gabapentin 3 171,240 2 2 4,732 1,327 -1,562 27510 1432 3 63,32 193 

103 Hydralazine 3 160,180 4 2 4,692 0,671 -1,787 18782 1417 1 62,77 182 

104 Levetiracetam 3 170,212 2 1 4,519 -0,693 -0,378 27106 1398 3 63,40 190 

105 Levothyroxine 3 776,874 4 3 12,681 3,965 -5,842 569130 8837 5 92,78 1438 
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106 Lisinopril 3 405,495 5 4 10,988 1,141 -2,838 1355521 16912 13 132,96 2362 

107 Losartan 3 422,917 7 2 11,664 4,846 -6,716 1045260 19332 8 84,94 2665 

108 Metformin 3 129,167 5 4 3,521 0,607 -1,388 13687 716 3 88,99 96 

109 Nadolol 3 309,406 5 4 8,594 1,201 -2,049 390186 8518 6 81,95 1168 

110 Penicillamine 3 149,208 2 3 3,860 -1,862 0,942 12267 591 2 63,32 86 

111 Propylthiouracil 3 170,230 1 1 4,940 0,477 -1,556 18909 1161 2 32,34 158 

112 Pyridostigmine 3 181,214 1 0 4,979 0,306 -1,254 43898 2003 3 32,55 262 

113 Ranitidine 3 314,404 5 2 8,651 1,301 -2,613 535958 8479 10 88,34 1227 

114 Reserpine 3 608,688 9 1 16,109 3,332 -5,645 4206442 49046 10 114,02 6905 

115 Terazosin 3 387,440 8 1 10,303 0,960 -3,188 754065 15647 5 101,98 2195 

116 Topiramate 3 339,359 7 1 7,371 -0,602 -1,348 247579 6440 3 115,54 948 

117 Valsartan 3 435,528 6 2 12,202 4,590 -6,087 1682497 22840 11 106,72 3122 

118 Zalcitabine 3 211,221 4 2 5,296 -1,394 -0,380 58431 2583 2 88,15 369 

119 Acetazolamide 4 222,237 5 2 4,649 -0,997 -1,300 42977 1722 3 113,98 257 

120 Azathioprine 4 277,262 7 1 6,784 0,720 -2,698 133848 4562 3 116,52 676 

121 Cefixime 4 453,444 8 4 10,844 -0,413 -3,100 1216151 16510 9 183,98 2560 

122 Oxcarbazepine 4 252,273 2 1 7,223 1,495 -3,017 117397 4490 1 63,40 593 

 



24 

2.2. Assessment of informativeness of molecular descriptors 

 

The Kruskal-Wallis test is used to compare groups or classes of samples. If 

the calculated value of the test is greater than the critical value, the tested 

parameter significantly changes depending on the solvent classes; otherwise, there 

are no statistically significant inter-class differences for the tested parameter [35]. 

In this study, the Kruskal-Wallis test was used to determine the molecular 

descriptors whose values have the greatest influence on classifying solvents into 

different classes. The Kruskal-Wallis test was calculated for 122 solvents 

characterized by 11 molecular descriptors, using the software package Matlab 

R2024b [36], and the results are presented in Table 2.2. The critical value of χ² at a 

significance level of 5% is 7,81 (with 3 degrees of freedom). 

 

Table 2.2. Results of the Kruskal-Wallis test calculation for 11 molecular 

descriptors 

 Descriptor 

MW HBA HBD MR logP logS BI MTI RotB PSA WI 

χ
2 

5,91 4,41 11,35 5,75 29,64 28,46 5,08 6,26 2,11 13,66 5,88 

 

It has been established that the classification of drug compounds according 

to the Biopharmaceutics Classification System is most significantly influenced by 

the following molecular descriptors: 

1) number of HBond donors (HBD); 

2) partition coefficient (logP); 

3) solubility (logS); 

4) polar surface area (PSA). 

For other descriptors calculated value of χ² is lower than critical value. So 

molecular weight, number of HBond acceptors, molar refractivity, Balaban index, 

molecular topological index, number of rotatable bonds and Wiener index are not 
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informativeness for classification of drug compounds according to the 

Biopharmaceutics Classification System.  

 

2.3. Optimizing the architecture of a Probabilistic Neural Network 

 

A Probabilistic Neural Network (PNN) is a type of neural network based on 

Bayesian theory and kernel functions primarily used for classification tasks. The 

architecture of a PNN consists of several layers. The input layer takes feature 

vectors as input and each neuron in this layer corresponds to a feature. The pattern 

layer calculates the probability density function for each class using a Gaussian 

kernel function where each neuron represents a training sample. The summation 

layer sums the outputs from the pattern layer for each class to estimate the 

likelihood. The output layer uses the maximum likelihood principle to classify the 

input into one of the target classes. PNNs are characterized by fast training since 

they involve simple calculations without iterative optimization. They are capable 

of forming nonlinear decision boundaries due to the Gaussian function in the 

pattern layer and they provide probabilistic output indicating the probability of 

belonging to each class. Although PNNs are known for accuracy and quick training 

they can be computationally intensive during prediction due to the large number of 

neurons in the pattern layer. 

In a Probabilistic Neural Network, the spread parameter (also known as the 

smoothing parameter or sigma) plays a crucial role in determining the shape and 

width of the Gaussian function used in the pattern layer. The spread parameter 

controls the smoothness of the probability density function estimates. A small 

spread value results in a narrow Gaussian curve, making the network sensitive to 

small variations and prone to overfitting. A large spread value results in a wider 

Gaussian curve, leading to smoother decision boundaries but potentially causing 

underfitting. Selecting an appropriate spread value is essential for achieving a good 

balance between model generalization and accuracy [37, 38].  
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Set of 122 drug compunds, which are characterized by four descriptors 

(number of HBond donors; partition coefficient; solubility; polar surface area) was 

used for determination of effective architecture of Probabilistic Neural Network for 

accurate drug classification according to the Biopharmaceutics Classification 

System. The PNN was built using the software package Matlab R2024b [36].  

Part of incorrect classified drug compounds at different spread values is 

listed in Table 2.3. The proportion of incorrectly classified drug compounds was 

calculated as the number of incorrectly classified drug molecules divided by the 

total number of drug compounds.  

 

Table 2.3. Results of Probabilistic Neural Network training 

Spread value Part of incorrect classified drug compounds, % 

0,1 0,0 

0,2 0,0 

0,3 0,0 

0,4 0,0 

0,5 0,0 

0,6 0,0 

0,7 0,8 

0,8 1,6 

0,9 1,6 

1,0 1,6 

 

So, the correct training of probabilistic neural network was archived at values 

of spread parameter from 0,1 to 0,6 (there are no classification errors). One drug 

compound (Norethisterone) was incorrect classified at value of spread parameter 

0,7. Two drug compounds (Norethisterone and Ketorolac) were incorrect classified 

at values of spread parameter from 0,8 to 1,0. 

To check the correctness of the proposed model, 122 drug compounds was 

divided on two sub sets: training (104 drug compounds, 85%) and testing (18 drug 
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compounds, 15%). Testing sub set includes «new» drug compounds for neural 

network. The set of molecular descriptors was unchanged: number of HBond 

donors; partition coefficient; solubility; polar surface area. The list of testing sub 

set and results of prediction of their classification according to the 

Biopharmaceutics Classification System are presented in Table 2.4.  

Correct classes prediction for 18 drug compounds of testing sub set was 

observed at value of spread parameter 0,1. One drug compound (Zidovudine) was 

incorrect classified at values of spread parameter from 0,2 to 1,0. That is why value 

of spread parameter 0,1 is recommended as effective value for drug classification 

according to the Biopharmaceutics Classification System.  

 

Table 2.4. Results of classes prediction according to the Biopharmaceutics 

Classification System for testing sub set 

Drug compound Correct class 
Spread value 0,1 

Spread value 

0,2−1,0 

Predicted class Predicted class 

Tramadol 1 1 1 

Zolpidem 1 1 1 

Bisoprolol 1 1 1 

Venlafaxine 1 1 1 

Zidovudine 1 1 2 

Doxepin 1 1 1 

Enalapril 1 1 1 

Rofecoxib 2 2 2 

Simvastatin 2 2 2 

Celecoxib 2 2 2 

Lorazepam 2 2 2 

Naproxen 2 2 2 

Cimetidine 3 3 3 

Risperidone 2 2 2 
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Acebutolol 3 3 3 

Atenolol 3 3 3 

Ergotamine 3 3 3 

Nevirapine 2 2 2 

 

2.4. Evaluation of predictive ability of the proposed model 

 

There are 23 compounds which had been assigned to multiple BCS classes 

in different scientific articles. The fact that some compounds are assigned to 

multiple BCS classes in different scientific articles can be explained by several 

factors: 

1. Variability in experimental conditions: solubility and permeability 

measurements can vary depending on the experimental setup, pH conditions, 

solvents used, and other factors; different studies might use slightly different 

methodologies, leading to discrepancies in BCS classification. 

2. Differences in data sources: some studies might use in vitro data, while 

others rely on in vivo data or computational predictions; these differences can 

result in varying classification outcomes. 

3. Polymorphism and drug formulations: a single compound can exist in 

different polymorphic forms or be formulated differently, which may alter its 

solubility or permeability, thereby influencing its BCS classification. 

4. Biological variability: differences in species, individual variability, or 

pathological conditions can affect the absorption and solubility profiles, leading to 

inconsistent classification across studies. 

5. Revised data and updated methods: as analytical techniques improve and 

more accurate data become available, older classifications may be revised, leading 

to inconsistencies when comparing newer and older studies. 

6. Borderline cases: some compounds may have solubility and permeability 

values that are close to the threshold between two BCS classes, making them 
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susceptible to being categorized differently depending on minor variations in data 

or interpretation. 

The list of compounds sorted into two BCS classes [34, 39-44] is presented 

in Table 2.5. Also Table 2.5 includes results of evaluation of predictive ability of 

the proposed model (PNN with value of spread parameter 0,1) and values of four 

descriptors (number of HBond donors; partition coefficient; solubility; polar 

surface area), which are the most informativeness according to the Kruskal-Wallis 

test.  

 

Table 2.5. Results of evaluation of predictive ability of the proposed model 

Drug compound 
Descriptor Possible 

classes 

Predicted 

class HBD LogP logS PSA 

Amitriptyline 0 4,932 -5,102 3,24 1/2 1 

Chlorpromazine 0 4,845 -5,397 6,48 1/2 1 

Digoxin 6 2,185 -5,232 203,06 1/2 1 

Valproic acid 1 2,666 -1,882 37,30 1/2 2 

Warfarin 1 2,985 -3,934 63,60 1/2 2 

Acetylsalicylic acid 1 1,443 -1,724 63,60 1/3 3 

Captopril 2 0,581 -1,157 57,61 1/3 1 

Chlorpheniramine 0 3,234 -3,781 15,60 1/3 1 

Dexamethasone 3 1,143 -2,682 94,83 1/3 1 

Fluconazole 1 0,290 -2,127 76,15 1/3 1 

Isoniazid 2 -0,819 -0,375 67,48 1/3 3 

Lamivudine 2 -1,451 -0,520 88,15 1/3 3 

Methyldopa 4 -1,632 0,030 103,78 1/3 1 

Paracetamol 2 0,441 -1,058 49,33 1/3 1 

Pravastatin 4 2,133 -3,145 124,29 1/3 1 

Promethazine 0 4,371 -4,777 6,48 1/3 1 

Pyrazinamide 1 0,436 -0,982 67,81 1/3 3 

Quinine 1 2,584 -3,400 45,06 1/3 1 
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Amiloride 4 1,085 -3,161 158,23 1/4 1 

Acetaminophen 2 0,441 -1,058 49,33 1/4 1 

Spironolactone 0 3,390 -4,746 60,44 2/4 2 

Furosemide 3 1,220 -3,571 118,72 3/4 3 

Hydrochlorothiazide 3 -0,429 -2,838 118,36 3/4 4 

 

Let’s consider results more detailed: 

− Amitriptyline: according to various scientific articles, this compound can 

belong to BCS Class I or II, the PNN classified it as Class I; 

− Chlorpromazine: according to various scientific articles, this compound 

can belong to BCS Class I or II, the PNN classified it as Class I; 

− Digoxin: according to various scientific articles, this compound can belong 

to BCS Class I or II, the PNN classified it as Class I; 

− Valproic acid: according to various scientific articles, this compound can 

belong to BCS Class I or II, the PNN classified it as Class II; 

− Warfarin: according to various scientific articles, this compound can 

belong to BCS Class I or II, the PNN classified it as Class II; 

− Acetylsalicylic acid: according to various scientific articles, this 

compound can belong to BCS Class I or III, the PNN classified it as Class III; 

− Captopril: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Chlorpheniramine: according to various scientific articles, this compound 

can belong to BCS Class I or III, the PNN classified it as Class I; 

− Dexamethasone: according to various scientific articles, this compound 

can belong to BCS Class I or III, the PNN classified it as Class I; 

− Fluconazole: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Isoniazid: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class III; 
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− Lamivudine: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class III; 

− Methyldopa: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Paracetamol: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Pravastatin: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Promethazine: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class I; 

− Pyrazinamide: according to various scientific articles, this compound can 

belong to BCS Class I or III, the PNN classified it as Class III; 

− Quinine: according to various scientific articles, this compound can belong 

to BCS Class I or III, the PNN classified it as Class I; 

− Amiloride: according to various scientific articles, this compound can 

belong to BCS Class I or IV, the PNN classified it as Class I; 

− Acetaminophen: according to various scientific articles, this compound 

can belong to BCS Class I or IV, the PNN classified it as Class I; 

− Spironolactone: according to various scientific articles, this compound can 

belong to BCS Class II or IV, the PNN classified it as Class II; 

− Furosemide: according to various scientific articles, this compound can 

belong to BCS Class III or IV, the PNN classified it as Class III; 

− Hydrochlorothiazide: according to various scientific articles, this 

compound can belong to BCS Class III or IV, the PNN classified it as Class IV. 
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Conclusions to section 2 

It was established, that: 

− four descriptors (number of HBond donors; partition coefficient; 

solubility; polar surface area) are sufficient for accurate drug classification 

according to the Biopharmaceutics Classification System; 

− architecture of Probabilistic Neural Network with a spread value 0,1 is 

effective for accurate drug classification according to the Biopharmaceutics 

Classification System.  
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CONCLUSIONS 

 

1. It was established that four descriptors (number of HBond donors, 

partition coefficient, solubility, and polar surface area) are sufficient for accurate 

drug classification according to the Biopharmaceutics Classification System. 

2. The architecture of the Probabilistic Neural Network with a spread value 

of 0.1 proved to be an effective tool for accurate drug classification according to 

the Biopharmaceutics Classification System. 

3. The analysis of scientific literature revealed compounds that had been 

reported as belonging to multiple BCS classes in different scientific articles. The 

developed model assigned each of these compounds to a single BCS class. 

4. The obtained results demonstrate the significant potential of chemometric 

methods for developing predictive models, that can optimize the drug development 

process. 
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Introduction. The analysis of the Biopharmaceutics Classification System 

using chemometric methods is a highly relevant and promising research topic. The 

Biopharmaceutics Classification System categorizes drugs into four classes based 

on their solubility and permeability. Predicting properties using chemometric 

models can minimize the number of in vitro and in vivo experiments required, 

streamlining the drug development pipeline. Due to the increasing volume of data 

in the pharmaceutical industry, chemometric methods are gaining popularity for 

their ability to process large datasets. Integrating machine learning and artificial 

intelligence enhances the prediction of biopharmaceutical parameters, making 

these methods even more powerful. Combining Biopharmaceutics Classification 

System with chemometric methods creates new opportunities for predicting 

bioavailability and developing pharmaceuticals, making the topic highly relevant 

in both research and practical applications. Aim of research: the aim of this study 

is to develop an accurate drug classification model according to the 

Biopharmaceutics Classification System using chemometric methods.  

Materials and methods. Data set – total 145 drug compounds, 11 physical-

chemical, and topological descriptors. Methods of investigation: Kruskal-Wallis 

test, Probabilistic Neural Network. 

Results. The Biopharmaceutics Classification System is a framework used 

to classify drugs based on their solubility and intestinal permeability. It plays a 
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crucial role in drug development, guiding the formulation and regulatory approval 

processes. 

Chemometric methods are essential tools in modern chemistry and related 

fields, providing robust techniques for analyzing complex chemical data. The 

primary aim of chemometrics is to extract useful information from experimental 

data using mathematical and statistical methods. 

It was shown, that four descriptors (number of HBond donors; partition 

coefficient; solubility; polar surface area) are sufficient for accurate drug 

classification according to the Biopharmaceutics Classification System; 

architecture of Probabilistic Neural Network with a spread value 0,1 is effective for 

accurate drug classification according to the Biopharmaceutics Classification 

System. 

Conclusions. It was established that four descriptors (number of HBond 

donors, partition coefficient, solubility, and polar surface area) are sufficient for 

accurate drug classification according to the Biopharmaceutics Classification 

System. 

The architecture of the Probabilistic Neural Network with a spread value of 

0.1 proved to be an effective tool for accurate drug classification according to the 

Biopharmaceutics Classification System. 

The analysis of scientific literature revealed compounds that had been 

reported as belonging to multiple BCS classes in different scientific articles. The 

developed model assigned each of these compounds to a single BCS class. 

The obtained results demonstrate the significant potential of chemometric 

methods for developing predictive models, that can optimize the drug development 

process. 

 


