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REVIEW ARTICLE

Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/
QTAIM computational lessons

Ol’ha O. Brovarets’a,b and Dmytro M. Hovoruna,b*
aDepartment of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of
Ukraine, Kyiv, Ukraine; bDepartment of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras
Shevchenko National University of Kyiv, Kyiv, Ukraine

Communicated by Ramaswamy H. Sarma.

(Received 31 January 2018; accepted 5 March 2018)

In this Review, we have summarized and generalized the results of the investigation of the microstructural mechanisms
of the tautomerization by the counter movement of the protons along the neighboring intermolecular H-bonds in 22 bio-
logically important pairs of nucleotide bases in the framework of the original method, which allows to trace the evolu-
tion of the physicochemical parameters, that characterize these processes along the intrinsic reaction coordinate (IRC). It
was demonstrated the performance of the introduction of the conception of the key points (KPs) (from nine to five,
depending on the symmetry and nature of system), which exhaustively characterize the flow of the tautomerization pro-
cesses. It was proved that for all tautomerizing base pairs the extrema of the first derivative of the electron energy of the
complex by IRC coincide with the second and penultimate KPs, in which the Laplacian of the electron density equals
zero at the corresponding (3,-1) bond critical points of the H-bonds. It was established the linear dependence of the
width of the transition state zone of the DPT tautomerization on the degree of its asynchrony. Authors emphasize that
the tautomerization reaction through the DPT of the H-bonded pairs of nucleotide bases can be considered successful in
those and only in those case if the tautomerized complex is a dynamically stable system, during lifetime of which low-
frequency intermolecular vibrations could develop. Perspectives of the application of the obtained approaches to the thor-
ough study of the proton transfer processes in the biologically important objects have been briefly discussed.

Keywords: Double proton transfer; mutagenic tautomerization; intrinsic reaction coordinate; sweep of the physicochemi-
cal parameters; key point; reaction regions; transition state; reagent; product; stepwise; concerted; synchronous; asyn-
chronous; hydrogen bond; nucleobase pair

Introduction

Proton transfer (PT), in particular multiple PT, is a wide-
spread phenomena in many branches of life sciences,
physics, chemistry, and biology (Bell, 1973; Boutis,
1992). Thus, double proton transfer (DPT), that could be
realized via the stepwise or concerted (synchronous or
asynchronous) mechanisms along the inter- or
intramolecular hydrogen (H) bonds, has been compre-
hensively studied at the molecular level in the different
biologically important complexes – canonical A·T(WC)
and G·C(WC) Watson–Crick (so-called Löwdin’s mecha-
nism) (Brovarets’ & Hovorun, 2014b, 2014e, 2015h;
Brovarets’, Kolomiets’, & Hovorun, 2012; Gorb, Podol-
yan, Dziekonski, Sokalski, & Leszczynski, 2004;
Löwdin, 1963; Roßbach & Ochsenfeld, 2017) and wob-
ble (Brovarets’, Zhurakivsky, & Hovorun, 2015; Paderm-
shoke, Katsumoto, Masaki, & Aida, 2008) base pairs,
model protein–DNA complexes (Brovarets’, Yurenko,
Dubey, & Hovorun, 2012; Strazewski & Tamm, 1990)
and water-assisted proton transfer in nucleosides (Mar-

kova, Pejov, Stoyanova, & Enchev, 2017), that have
been considered in the literature as the source of the for-
mation of the mutagenic tautomers (Kondratyuk, Sami-
jlenko, Kolomiets’, & Hovorun, 2000; Platonov,
Samijlenko, Sudakov, Kondratyuk, & Hovorun, 2005;
Samijlenko, Krechkivska, Kosach, & Hovorun, 2004),
determining the origin of the spontaneous point muta-
tions, heredity, aging, and diseases (Löwdin, 1966); and
also in enzymes (Eigen, 1964; Kirby, 1997) or others
(Scheiner, 1994; Koch et al., 2017; Smedarchina, Sieb-
rand, & Fernández-Ramos, 2018).

PT reactions are governed by the transition state (TS)
(Hratchian & Schlegel, 2005) – stationary point on the
potential energy surface with one imaginary frequency
that connects the reagent and product and could proceed
over or under the barrier of the reaction via the tunneling
(Bell, 1980; Koch et al., 2017; Löwdin, 1963; Smedar-
china et al., 2018), when the energy levels of proton in
its initial and final states become equal. Activation bar-
rier of the PT defines the tautomeric equilibria and kinet-
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ical parameters, e.g. lifetime and rate constants (Atkins,
1998).

However, despite the fundamental role of this reac-
tion, the details of the course of the tautomerization reac-
tion via the DPT in the pairs of nucleobases remain
poorly understood.

Thus, in particular, the overwhelming majority of the
authors believe that the necessary and sufficient condi-
tion for the successful tautomerization of the H-bonded
pairs of nucleobases through the DPT is the presence of
a local minimum on the surface of the potential (elec-
tron) energy corresponding to the tautomerized complex
(Danilov & Kventsel, 1971; Florian, Hrouda, & Hobza,
1994; Gorb et al., 2004; Jacquemin, Zúñiga, Requena, &
Céron-Carrasco, 2014; Romero & Hernandez, 2017;
Tolosa, Sansón, & Hidalgo, 2017, 2018). At this, the
question according the conditions under which these tau-
tomers of nucleotide bases are mutagenic is not raised at
all. At the same time, the amount of the biologically
important pairs of nucleotide bases, studied in terms of
their tautomerization via the DPT, remains quite limited.

At the same time, answer on this question is of out-
most importance for the understanding of the microstruc-
tural mechanisms of the origin of the spontaneous point
mutations in DNA, in particular – transitions and
transversions. Since for a long time the emergence of
this rare, but very important from the biological point of
view events, is associated with the transition of the DNA
bases from the main to the rare mutagenic tautomeric
forms.

So, the main goal of this Review consists in the max-
imal generalization of the data on the DPT tautomeriza-
tion in the canonical and incorrect H-bonded nucleobase
pairs involving canonical nucleobases and their muta-
genic analogues obtained within the framework of the
elaborated by us approach for the establishment of the
atomistic mechanisms of the tautomerization via the dou-
ble counter-transfer of protons along the neighboring
intermolecular hydrogen bonds in 22 biologically impor-
tant pairs of nucleotide bases (Brovarets’, 2010, 2015).
Obtained rules could be further extended for the survey
of the DPT reactions in the others biologically important
complexes, not only in nucleobase pairs.

Microstructural mechanisms of the double proton
transfer in the H-bonded nucleobase pairs. For the first
time we have explored Löwdin’s mechanism (Löwdin,
1963, 1966) of the induction of the mutagenic tautomers
via the DPT along the neighboring intermolecular H-
bonds not only for the canonical Watson–Crick (WC)
A∙T(WC) and G∙C(WC) DNA base pairs (Löwdin,
1963), but also for the incorrect DNA base pairs – wob-
ble G·T, short WC-like C·T, C*·C and T*·T, long WC-
like A∙A*, A∙G, and G·G* or Watson–Crick-like A·C*,
G*·T, G·Asyn, A*·G*syn, A*·Asyn, and G·G*syn base
mispairs. We have also considered DPT tautomerization

in the base pairs by the participation of the analogues of
the A DNA base: hypoxanthine (H) arising from the
oxidative deamination of A (Karran & Lindahl, 1980;
Kondratyuk et al., 2000) (long WC-like H∙H, H*∙H,
H·A, and short WC-like H∙C, H*∙T base mispairs) and
2-aminopurine (2AP), that is a highly energetic structural
isomer of A DNA base (Hovorun, 1997) and is com-
monly known as strong mutagen (Brovarets’ & Pérez-
Sánchez, 2016, 2017; Brovarets’, Pérez-Sánchez, &
Hovorun, 2016; Brovarets’, Voiteshenko, & Hovorun,
2018; Brovarets’, Voiteshenko, Pérez-Sánchez, &
Hovorun, 2017a, 2018; Ronen, 1980) and fluorescent
analogue (Ward, Reich, & Stryer, 1969) (T·2AP* and
G·2AP* base mispairs).

Here and below, mutagenic tautomers of the nucle-
obases (Kondratyuk et al., 2000; Platonov et al., 2005;
Samijlenko et al., 2004) are marked by the asterisks;
moreover, we have used standard numeration of their
atoms (Saenger, 1984).

As a results, it was established that the A∙T↔A*∙T*
(Brovarets’ & Hovorun, 2014b, 2015h), G∙C↔G*∙C*
(Brovarets’ & Hovorun, 2014e), G·T↔G*·T* (Brovar-
ets’ et al., 2015), A∙G↔A*∙G* (Brovarets’, Zhu-
rakivsky, & Hovorun, 2014c), C∙T↔C*∙T* (Brovarets’
& Hovorun, 2013a), G∙G*syn↔G*∙G*syn (Brovarets’ &
Hovorun, 2014a), A*∙Asyn↔A∙A*syn (Brovarets’, Zhu-
rakivsky, & Hovorun, 2014b), A*∙G*syn↔A∙G*syn (Bro-
varets’ & Hovorun, 2014c), H∙C↔H*∙C* (Brovarets’ &
Hovorun, 2013c; Brovarets’, Zhurakivsky, & Hovorun,
2013a), H∙H↔H*∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a) and H·A↔H*·A* (Brovarets’
& Hovorun, 2013c; Brovarets’, Zhurakivsky, &
Hovorun, 2014d) tautomerization processes via the DPT
are not responsible for the generation of the mutagenic
tautomers, since the terminal, tautomerized base pairs are
dynamically unstable: low-frequency intermolecular
vibrations can’t develop during their lifetime (Figure 1,
Table 1). Dynamical non-stability possesses quantum nat-
ure and occurs due to the fact that the zero energy of the
stretching vibration υ(AH), which frequency becomes
imaginary in the TS of tautomerization, exceeds its
reverse electronic barrier. The G·Asyn DNA base mispair
does not tautomerize via the DPT at all, since there is no
local minimum corresponding to the tautomerized
G*·A*syn mismatch on the potential energy surface (Bro-
varets’ & Hovorun, 2014c).

At the tautomerization of the dynamically stable
short WC-like T∙T* (Brovarets’, Zhurakivsky, &
Hovorun, 2014a) and C∙C* (Brovarets’ & Hovorun,
2013b), as well as long WC-like A∙A* (Brovarets’, Zhu-
rakivsky, & Hovorun, 2013b), G∙G* (Brovarets’ &
Hovorun, 2014d) and H∙H* (Brovarets’ & Hovorun,
2013c; Brovarets’, Zhurakivsky, & Hovorun, 2013c)
nucleobase pairs, mutagenic tautomers are distributed
among the monomers with equal probability, that is
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Figure 1. Geometrical structures of the five the most important key points (KPs) (numerical values of their IRC are presented below
in Bohr) describing the progression of the tautomerization via the DPT along the intermolecular H-bonds in the investigated nucle-
obase pairs (B3LYP/6–311++G(d,p) level of theory, ε = 1). The dotted lines indicate AH···B, CH···B, AH···HB H-bonds and attrac-
tive A···B van der Waals contacts, while continuous lines show covalent bonds (their lengths are presented in angstroms). Carbon
atoms are in light blue, nitrogen in dark blue, hydrogen in gray, and oxygen in red.
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important for understanding of the consolidation of the
point mutations – transitions and transversions – in the
subsequent rounds of DNA replication (Figure 1,
Table 1).

It was established that the short-lived, low-populated
A*·C, G·T*, and H*∙T mispairs are ‘providers’ of the
long-lived enzymatically competent A·C* (Brovarets’ &
Hovorun, 2015a), G*·T (Brovarets’, & Hovorun, 2015b,
2015c), and H∙T* (Brovarets’ & Hovorun, 2013c; Bro-

Figure 1. (Continued)
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varets’ et al., 2013a) base pairs, respectively, at the ori-
gin of the replication errors in DNA. Moreover, by com-
parison of the calculated distances of the intermolecular
H-bonds with the data of the X-ray experiments (Bebe-
nek, Pedersen, & Kunkel, 2011; Brovarets’ & Hovorun,
2015a, 2015b, 2015c, 2015d; Wang, Hellinga, & Beese,
2011), it was established for the first time that the incor-
rect A·C and G·T base pairs with Watson–Crick geome-
try occur in the A·C* and G*·T tautomeric forms in the
recognition pocket of the high-fidelity DNA-polymerase
in its closed state.

Recently, this biologically important conclusion (Bro-
varets’, & Hovorun, 2015b, 2015c), made by us using
the simplest model systems – H-bonded pairs of nucle-
obases, has been confirmed by the molecular dynamics
at the high molecular level (Maximoff, Kamerlin, & Flo-
rian, 2017).

Our research group have developed original method-
ology allowing to understand the intricacies of the
atomic mechanisms of the DPT tautomerization and to
obtain the evolution of the physicochemical parameters,
such as electronic energy E, the first derivative of the
electronic energy by the intrinsic reaction coordinate
(IRC) dE/dIRC, the dipole moment of the base pair μ,
the distances dA∙∙∙B, dAH/HB, and the angle ∠AH···B of
the intermolecular H-bonds, the electron density ρ, the
Laplacian of the electron density Δρ, ellipticity ε, and
the energy EHB at the (3,-1) bond critical points of the
intrapair H-bonds, the NBO charges qNBO of the hydro-
gen atoms involved in the tautomerization, the glycosidic
angles α1/α2, and the distance R(H1/9–H1/9) between the
glycosidic hydrogens, along the entire IRC, not only in
the stationary structures such as reagent, product, and
transition state (Brovarets’, 2010, 2015; Brovarets’ &
Hovorun, 2013a, 2013b, 2013c, 2014a, 2014b, 2014c,
2014d, 2014e, 2015a, 2015b, 2015c, 2015d, 2015e,
2015f, 2015g, 2015h; Brovarets’ et al., 2013a, 2013b,
2013c, 2014a, 2014b, 2014c, 2014d, 2015; Brovarets’ &
Pérez-Sánchez, 2016, 2017; Brovarets’, Pérez-Sánchez,
et al., 2016; Brovarets’, Voiteshenko, et al., 2018; Bro-
varets’, Voiteshenko, Pérez-Sánchez, et al., 2017a,
2017b) (Figures 1–5, 7–9, Tables 1–4).

So, based on the profiles of the geometrical parame-
ters of the complexes and H-bonds in them, it was estab-
lished that the processes of the DPT tautomerization
through the counter-transfer of the protons along the
antiparallel H-bonds are accompanied by the deformation
or, in other words, so-called ‘breathing’ of the bases
within pairs, in particular their compression becomes
pronounced at the TS region due to the decreasing of the
intermolecular distances. It was also outlined the charac-
teristic boundaries of these geometrical changes. It was
revealed that complexes compress in the process of the
DPT tautomerization due to the decreasing of the dis-
tance between the monomers and also at this the mutual

reorientation of the monomers takes place (Brovarets’,
2010, 2015; Brovarets’ & Hovorun, 2013a, 2013b,
2013c, 2014a, 2014b, 2014c, 2014d, 2014e, 2015a,
2015b, 2015c, 2015d, 2015e, 2015f, 2015g, 2015h; Bro-
varets’ et al., 2013a, 2013b, 2013c, 2014a, 2014b,
2014c, 2014d, 2015; Brovarets’ & Pérez-Sánchez, 2016,
2017; Brovarets’, Pérez-Sánchez, et al., 2016; Brovarets’,
Voiteshenko, et al., 2018; Brovarets’, Voiteshenko,
Pérez-Sánchez, et al., 2017a, 2018) (Figures 8(d)–(h)).

Sweeps of the dipole moments μ along the IRC of
the DPT tautomerizations convincingly demonstrate that
these processes are dipole active, that is accompanied by
the changes of the dipole moment of the system as by
the absolute value, so by the orientation (Figure 3). This
means that tautomerizing complexes emit electromag-
netic energy during the DPT tautomerization. From the
one side, this property of the complexes could be used
for the construction of the molecular generators of the
electromagnetic waves, and from the other side – this
opens the possibility for the managment of these pro-
cesses by the external electric fields (Arabi & Matta,
2011; Cerón-Carrasco, Cerezo, & Jacquemin, 2014;
Cerón-Carrasco & Jacquemin, 2013a, 2013b; Ruiz-
Blanco, Almeida, Sotomayor-Torres, & García, 2017;
Shaik, Mandal, & Ramanan, 2016; Sowlati-Hashjin &
Matta, 2013; Zhang & Xie, 2016).

We have also registered the case of the so-called “si-
lent” H∙H↔H*∙H* (Brovarets’ & Hovorun, 2013c; Bro-
varets’ et al., 2013a) DPT tautomerization, during which
the zero dipole moment of a system with C2h symmetry
does not change, remaining zero throughout entire reac-
tion.

Analysis of the dependence of the NBO charges of
the hydrogen atoms, migrating along the neighboring
intermolecular H-bonds during the tautomerization of the
complexes, on the IRC enables us to arrive to the con-
clusion that protons participating in these processes do
not go beyond their electronic coat and transfer as hydro-
gen atoms (Brovarets’, 2010, 2015; Brovarets’ &
Hovorun, 2013a, 2013b, 2013c, 2014a, 2014b, 2014c,
2014d, 2014e, 2015a, 2015b, 2015c, 2015d, 2015e,
2015f, 2015g, 2015h; Brovarets’ et al., 2013a, 2013b,
2013c, 2014a, 2014b, 2014c, 2014d, 2015; Brovarets’ &
Pérez-Sánchez, 2016, 2017; Brovarets’, Pérez-Sánchez,
et al., 2016; Brovarets’, Voiteshenko, et al., 2018; Bro-
varets’, Voiteshenko, Pérez-Sánchez, et al., 2017a, 2018).

Based on the electron-topological characteristics of
the neighboring intermolecular bonds, along which pro-
tons migrate, namely the value of the electron density ρ
and its Laplacian Δρ in the corresponding bond critical
points (Bader, 1990), in particular on the crossings of
their curves and the points, where they become zeros,
for the first time we have introduced the conception of
the key points (KPs) (their maximum number in accor-
dance with the rules of their introduction reaches 9),
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Table 1. Energetic and kinetic characteristics of the tautomeric transformations of the canonical Watson-Crick, wobble, incorrect
long, short, and Watson–Crick-like pairs of nucleotide bases via the DPT along the neighboring intermolecular H-bonds in the free
state.

N
Tautomerization reaction via the
DPT

Number
of KPs

Type of
tautomerization

reaction ΔGa ΔEb ΔΔGTS
c ΔΔETS

d ΔΔGe ΔΔEf τg

MP2/aug-cc-pVTZ//MP2/6–311++G(d,p)
1 A·T↔A*·T* (Brovarets’ &

Hovorun, 2014b, 2015h)
9 Asynchronous

concerted
11.95 12.26 10.29 12.40 −1.66 0.14 6.5·10−15

2 G·C↔G*·C* (Brovarets’ &
Hovorun, 2014e)

9 Asynchronous
concerted

9.22 8.22 9.69 13.28 0.47 5.06 1.6·10−13

MP2/cc-pVQZ//B3LYP/6–311++G(d,p)
3 G·T↔G*·T* (Brovarets’ et al.,

2015)
9 Asynchronous

concerted
11.28 12.30 10.20 12.76 −1.09 0.46 2.2·10−14

4 A·A*↔A*·A (Brovarets’,
Zhurakivsky, & Hovorun, 2013b)

9 Synchronous
concerted

0.00 0.00 7.01 10.33 7.01 10.33 1.8·10−8

5 A·G↔A*·G* (Brovarets’ et al.,
2014c)

8 Asynchronous
concerted

10.07 9.58 9.63 11.46 −0.44 1.88 4.8·10−14

6 G·G*↔G*·G (Brovarets’ &
Hovorun, 2014d)

9 Asynchronous
concerted

0.00 0.00 5.51 8.33 5.51 8.33 8.2·10−10

7 A·C*↔A*·C (Brovarets’ &
Hovorun, 2015a)

9 Asynchronous
concerted

3.99 3.64 8.17 10.53 4.18 6.89 1.1·10−10

8 G*∙T↔G∙T* (Brovarets’, &
Hovorun, 2015b, 2015c)

9 Asynchronous
concerted

1.22 1.19 2.63 5.61 2.63 5.61 8.1·10−13

9 C·C*↔C*·C (Brovarets’ &
Hovorun, 2013b)

9 Asynchronous
concerted

0.00 0.00 8.28 10.83 8.28 10.83 1.5·10−7

10 C·T↔C*·T* (Brovarets’ &
Hovorun, 2013a)

9 Asynchronous
concerted

9.15 8.99 9.55 11.38 0.40 2.39 2.1·10−13

11 T·T*↔T*·T (Brovarets’ et al.,
2014a)

5 Synchronous
concerted

0.00 0.00 4.64 8.18 4.64 8.18 1.6·10−10

12 G·G*syn↔G*·G*syn (Brovarets’
& Hovorun, 2014a)

8 Asynchronous
concerted

11.02 11.15 9.07 12.17 −1.96 1.02 4.1·10−15

13 A*·Asyn↔A·A*syn (Brovarets’
et al., 2014b)

8 Asynchronous
concerted

13.98 14.71 14.15 16.43 0.16 1.72 1.1·10−13

14 A*·G*syn↔A·G*syn (Brovarets’
& Hovorun, 2014c)

9 Asynchronous
concerted

1.89 2.20 2.42 4.60 0.52 2.40 2.2·10−13

15 H·C↔H*·C* (Brovarets’ &
Hovorun, 2013c; Brovarets’ et al.,
2013a)

9 Asynchronous
concerted

6.83 6.74 8.39 11.06 1.57 4.32 1.9·10−12

16 H*·T↔H·T* (Brovarets’ &
Hovorun, 2013c; Brovarets’ et al.,
2013a)

9 Asynchronous
concerted

2.94 2.67 4.75 7.75 1.82 5.07 2.7·10−12

17 H·H↔H*·H* (Brovarets’ &
Hovorun, 2013c; Brovarets’ et al.,
2013a)

6 Asynchronous
concerted

5.68 6.01 5.57 9.62 −0.11 3.61 6.6·10−14

18 H*·H↔H·H* (Brovarets’ &
Hovorun, 2013c; Brovarets’,
Zhurakivsky, & Hovorun, 2013c)

5 Synchronous
concerted

0.00 0.00 2.87 7.27 2.87 7.27 8.2·10−12

19 H·A↔H*·A* (Brovarets’ &
Hovorun, 2013c; Brovarets’ et al.,
2014d)

9 Asynchronous
concerted

10.32 10.20 9.52 11.78 −0.80 1.58 2.7·10−14

20 T·2AP*↔T*·2AP (Brovarets’ &
Pérez-Sánchez, 2016; Brovarets’
et al., 2017a)

9 Asynchronous
concerted

−7.83 −7.50 −0.82 1.64 7.02 9.14 1.1·10−8

21 G·2AP*↔G*·2AP (Brovarets’ &
Pérez-Sánchez, 2016; Brovarets’
et al., 2017a)

9 Asynchronous
concerted

−10.70 −9.96 −0.11 2.31 10.59 12.26 4.5·10−6

aThe Gibbs free energy of the product relatively the reactant of the tautomerization reaction (T = 298.15 K), kcal∙mol−1.
bThe electronic energy of the product relatively the reactant of the tautomerization reaction, kcal∙mol−1.
cThe Gibbs free energy barrier for the forward reaction of tautomerization, kcal∙mol−1.
dThe electronic energy barrier for the forward reaction of tautomerization, kcal∙mol−1.
eThe Gibbs free energy barrier for the reverse reaction of tautomerization, kcal∙mol−1.
fThe electronic energy barrier for the reverse reaction of tautomerization, kcal∙mol−1.
gThe lifetime of the product of the tautomerization reaction, s.
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Figure 2. Profiles of the electronic energy E (upper row) (in kcal∙mol−1) and the first derivative of the electronic energy with respect
to the IRC dE/dIRC (lower row) along the IRC of the tautomerization reactions via the DPT obtained at the B3LYP/6–311++G(d,p)
level of theory in the free state. All key points as vertical lines are presented for each profile.
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Figure 2. (Continued)
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which comprehensively describe the mechanism of tau-
tomerization and are figuratively speaking the “finger-
prints” of these reactions (Brovarets’, 2010, 2015;
Brovarets’ & Hovorun, 2013a, 2013b, 2013c, 2014a,
2014b, 2014c, 2014d, 2014e, 2015a, 2015b, 2015c,
2015d, 2015e, 2015f, 2015g, 2015h; Brovarets’ et al.,
2013a, 2013b, 2013c, 2014a, 2014b, 2014c, 2014d,
2015; Brovarets’ & Pérez-Sánchez, 2016, 2017; Brovar-
ets’, Pérez-Sánchez, et al., 2016; Brovarets’, Voitesh-

enko, et al., 2018; Brovarets’, Voiteshenko, Pérez-
Sánchez, et al., 2017a, 2018) (Figures 1, 7, 8, Table 4).

Three KPs correspond to the stationary points on the
potential energy surface: two local minima – reagent (the
1st KP), product (the last KP), and the transition state of
the DPT tautomerization. Others six KPs include: two
KPs (third and seventh for the biologically important
A∙C*↔A*∙C tautomerization via the DPT (Figures 7, 8,
Table 4)), in which migrating proton is localized midway

Figure 2. (Continued)
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Figure 3. Profile of the dipole moment μ (in Debay) along the IRC of the tautomerization reactions via the DPT obtained at the
B3LYP/6–311++G(d,p) level of theory in the free state. All key points as vertical lines are presented for each profile.
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between the electronegative atoms and are characterized
by the loosened A–H–B covalent bridge with equalized
geometrical and electron-topological properties, and also
four KPs (second, fourth, sixth, and eighth for the bio-

logically important A∙C*↔A*∙C tautomerization via the
DPT (Figures 7, 8, Table 4)), in which H-bonds begin to
acquire the features of the covalent bond and vice versa,
that is where the Laplacian of the electron density Δρ
passes through zero – ΔρA···H/ΔρH···B = 0 (see, at the
example of the biologically important A∙C*↔A*∙C tau-
tomerization via the DPT (Figures 7, 8, Table 4)). Nota-
bly, for all considered nucleobase pairs, the profiles of
the electron density ρ and its Laplacian Δρ in the (3,-1)
bond critical points and also distance dAH/HB between
the hydrogen and electronegative A or B atoms demon-
strate χ-crossed curves (Figures 8(a), (b) and (e)).

It is obvious, that within the framework of the pro-
posed by us approach the number of the KPs could not
exceed nine by their definition. At the same time, we
have revealed the cases, where the DPT tautomerization
process is described by the smaller number of KPs, i.e.
it takes place their degeneration or overlapping with each
other (Figures 1, 2, 3).

In four cases – A∙G↔A*∙G* (Brovarets’ et al.,
2014c), G∙G*syn↔G*∙G*syn (Brovarets’ & Hovorun,
2014a), A*∙Asyn↔A∙A*syn (Brovarets’ et al., 2014b),
and H·A↔H*·A* (Brovarets’ & Hovorun, 2013c; Bro-
varets’ et al., 2014d) tautomerizations via the DPT – we

Figure 3. (Continued)

Figure 4. Dependency of the degree of the asynchrony on the
width of the TS zone obtained at the B3LYP/6–311++G(d,p)
level of theory in the free state (see Table 3).

1890 O.O. Brovarets’ and D.M. Hovorun



have registered accidental degeneration of the sixth and
seventh KPs into one single KP corresponding to the TS
of these reactions, that is not connected with the symme-
try of the system (Figure 1, Tables 1–3). Moreover, we
have registered the degeneration of the KPs from nine to
five (it is obviously their minimum number), connected
with the symmetry of the system. It should be honestly
noted that our knowledge about the ratio between the
chemistry and system symmetry of the reaction, which
ultimately determines the final number of KPs, remains
limited. This can be illustrated by several interesting
examples.

By analogy with the H*∙H↔H∙H* (Brovarets’ &
Hovorun, 2013c; Brovarets’, Zhurakivsky, & Hovorun,
2013c) and T∙T*↔T*∙T (Brovarets’ et al., 2014a) tau-
tomerization processes via the DPT it could be assumed
that the A∙A*↔A*∙A (Brovarets’, Zhurakivsky, &
Hovorun, 2013b), G∙G*↔G*∙G (Brovarets’ & Hovorun,
2014d), and C∙C*↔C*∙C (Brovarets’ & Hovorun,
2013b) tautomerization processes via the DPT also
would be synchronous and described by the five KPs,
but these hopes were in vain (Figure 1, Tables 2, 3).
Obviously, more painstaking and hard work should be
done in this direction for the better understanding of the
details.

The analysis of the reaction force – the first deriva-
tive of the electronic energy E by IRC was proposed in
the literature (Duarte, Vöhringer-Martinez, & Toro-
Labbé, 2011; Guzmán-Angel, Inostroza-Rivera, Gutiér-
rez-Oliva, Herrera, & Toro-Labbé, 2016; Hargis, Vöhrin-
ger-Martinez, Woodcock, Toro-Labbé, & Schaefer, 2011;
Inostroza-Rivera et al., 2015; Jaque, Toro-Labbé, Polit-
zer, & Geerlings, 2008) for the characterization of the
course of the reaction and also for the partition of the
entire reaction region to the three regions – reactant,
transition state, and product regions. In order to charac-
terize the electronic activity taking place during a chemi-
cal reaction within the framework of the reaction force
analysis it was also proposed conceptions of the elec-
tronic chemical potential and reaction electronic flux (for
more details see (Murray, Toro-Labbé, Clark, & Politzer,
2009; Politzer, Murray, & Jaque, 2013; Toro-Labbé,
Gutierrez-Oliva, Concha, Murray, & Politzer, 2004;
Toro-Labbé, Gutiérrez-Oliva, Murray, & Politzer, 2009;
Yepes, Murray, Politzer, & Jaque, 2012; Yepes et al.,
2013a, 2013b)).

Calculations of the dE/dIRC enable us to establish
that these curves attain their maximum and minimum
values precisely at the second and eighth/penultimate
KPs (Figure 2). Basing on this, we proceed to precisely
divide the whole region of the reaction pathway of these
reactions to the regions of the reagent (between KPs first
and second, where the H-bonds transform into the cova-
lent bonds and vice), transition state (between KPs sec-
ond and eighth/penultimate) and product (between KPs

eighth/penultimate and ninth/terminal, where the reaction
complex relaxes into the terminal complex). This enables
us to interpret the phenomenology of the dE/dIRC func-
tion, that is to transfer from the phenomenological
description of the reaction to the penetration into its
atomic nature. It has been revealed, that the most inten-
sive changes occur at the TS region – mutual reorienta-
tion of the bases relative to each other, proton transfer
followed by the loss of the individual properties of the
nucleotide bases being bound by covalent or strong elec-
trostatic interactions, electronic and structural rebuilding
of the complexes and bases within them, formation and
disruption of the intermolecular covalent or hydrogen
bonds (Figures 8(d)–(h)).

By analysis of the quantitative data, presented in
Table 3, we have obtained for the first time the linear
dependence of the degree of asynchrony of the tautomer-
ization process (for the synchronous processes it equals
0) on the width of the transition state zone of the tau-
tomization reaction (Figure 4).

At the analysis of Table 3 it attracts attention at least
five remarkable facts.

First, the A∙T↔A*∙T* (Brovarets’ & Hovorun,
2014b, 2015h) and G·T↔G*·T* (Brovarets’ et al.,
2015) tautomerization reactions via the DPT have an
abnormally narrow area of the products of tautomeriza-
tion (0.58 and 0.99 Bohr, accordingly). The
G·C↔G*·C* (0.95) (Brovarets’ & Hovorun, 2014e),
A∙A*↔A*∙A (0.62) (Brovarets’, Zhurakivsky, &
Hovorun, 2013b), G·G*↔G*·G (1.08) (Brovarets’ &
Hovorun, 2014d), T∙T*↔T*∙T (0.58) (Brovarets’ et al.,
2014a), G∙G*syn↔G*∙G*syn (0.97) (Brovarets’ &
Hovorun, 2014a), H*∙T↔H∙T* (1.01) (Brovarets’ &
Hovorun, 2013c; Brovarets’ et al., 2013a), H∙H↔H*∙H*
(0.54) (Brovarets’ & Hovorun, 2013c; Brovarets’, Zhu-
rakivsky, & Hovorun, 2013c), H*∙H↔H∙H* (0.52 Bohr)
(Brovarets’ & Hovorun, 2013c; Brovarets’ et al., 2013a)
have narrow TS region.

Secondly, for 14 out of 21 tautomerization reactions,
that is, in 66.7 % of the cases, the transition zone is nar-
rower than the zone of reactant or product of the reac-
tion. Third, in the vast majority of cases, the reagent
zone is equal or wider than the zone of the tautomeriza-
tion product. Fourthly, among the asynchronous pro-
cesses of the DPT tautomerization the H*∙T↔H∙T*
(Brovarets’ & Hovorun, 2013c; Brovarets’ et al., 2013a),
C·C*↔C*·C (Brovarets’ & Hovorun, 2013b), and
G∙C↔G*∙C* (Brovarets’ & Hovorun, 2014e) reactions
have the lowest degree of asynchrony (0.01, 0.06, and
0.11 Bohr, accordingly), while for the A∙A*↔A*∙A
(Brovarets’, Zhurakivsky, & Hovorun, 2013b),
T∙T*↔T*∙T (Brovarets’ et al., 2014a), H*∙H↔H∙H*
(Brovarets’ & Hovorun, 2013c; Brovarets’, Zhurakivsky,
& Hovorun, 2013c) tautomerization reactions via the
DPT this value equals zero. Fifthly, for the synchronous
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processes of the A∙A*↔A*∙A (Brovarets’, Zhurakivsky,
& Hovorun, 2013b), T∙T*↔T*∙T (Brovarets’ et al.,
2014a), H*∙H↔H∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’, Zhurakivsky, & Hovorun, 2013c) DPT tau-
tomerizations, characterized by a minimum set of KPs,
the length of the reagent zone coincides with the length
of the reaction product zone. The same regularity is
observed only for single synchronous process of the
A∙A*↔A*∙A (Brovarets’, Zhurakivsky, & Hovorun,
2013b) DPT tautomerization with nine KPs.

Obtained results allow to make the generalization
according the nature of the TS, controlling the course of
the DPT reaction, from the point of view of its electronic
structure and symmetry (Table 2).

In the vast majority of cases the symmetry of the
final, tautomerized complex and TS of tautomerization
remain unchanged: C1 (G·C↔G*·C* (Brovarets’ &
Hovorun, 2014e), G·T↔G*·T* (Brovarets’ et al., 2015),
A∙G↔A*∙G* (Brovarets’ et al., 2014c), G·G*↔G*·G
(Brovarets’ & Hovorun, 2014d), C·C*↔C*·C (Brovar-
ets’ & Hovorun, 2013b), C∙T↔C*∙T* (Brovarets’ &

Table 2. Symmetrical properties of the reagent, product and TS of the tautomerization reactions via the DPT in the H-bonded nucle-
obase pairs obtained at the B3LYP/6–311++G(d,p) level of theory in the free state.

N Tautomerization reaction via the DPT Nature of the TS

Symmetry of the
initial/final
complexes

Symmetry
of the TS

1 A∙T↔A*∙T* (Brovarets’ & Hovorun, 2014b,
2015h)

Covalently bonded by loosened N6–H–O4
covalent bridge

Cs/Cs Cs

2 G∙C↔G*∙C* (Brovarets’ & Hovorun, 2014e) Covalently bonded by loosened O6–H–N4
and N1–H–N3 covalent bridges

C1/C1 C1

3 G·T↔G*·T* (Brovarets’ et al., 2015) Covalently bonded by loosened N1–H–O2
covalent bridge

C1/C1 C1

4 A∙A*↔A*∙A (Brovarets’, Zhurakivsky, &
Hovorun, 2013b)

Tight A+∙A- ion pair Cs/Cs Cs

5 A∙G↔A*∙G* (Brovarets’ et al., 2014c) Covalently bonded by loosened N6–H–N6
covalent bridge

C1/C1 C1

6 G·G*↔G*·G (Brovarets’ & Hovorun, 2014d) Covalently bonded by loosened N1–H–N1
covalent bridge

C1/C1 C1

7 A∙C*↔A*·C (Brovarets’ & Hovorun, 2015a) Covalently bonded by loosened N6–H–N4
covalent bridge

Cs/Cs Cs

8 G*∙T↔G∙T* (Brovarets’, & Hovorun, 2015b,
2015c)

Covalently bonded by loosened N1–H–N3
covalent bridge

Cs/Cs Cs

9 C·C*↔C*·C (Brovarets’ & Hovorun, 2013b) Tight C-∙C+ ion pair C1/C1 C1

10 C∙T↔C*∙T* (Brovarets’ & Hovorun, 2013a) Covalently bonded by loosened N4–H–O4
covalent bridge

C1/C1 C1

11 T∙T*↔T*∙T (Brovarets’ et al., 2014a) Symmetrical covalently bonded by loosened
O4–H–O4 and N3–H–N3 covalent bridges

C1/C1 C2v

12 G∙G*syn↔G*∙G*syn (Brovarets’ & Hovorun,
2014a)

Covalently bonded by loosened O6–H–O6
covalent bridge

C1/C1 C1

13 A*∙Asyn↔A∙A*syn (Brovarets’ et al., 2014b) Covalently bonded by loosened N1–H–N7
covalent bridge

Cs/Cs C1

14 A*∙G*syn↔A∙G*syn (Brovarets’ & Hovorun,
2014c)

Covalently bonded by loosened N1–H–N7
covalent bridge

Cs/Cs C1

15 H∙C↔H*∙C* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

Tight H-∙C+ ion pair Cs/Cs Cs

16 H*∙T↔H∙T* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

Covalently bonded by loosened N1–H–N3
covalent bridge

Cs/Cs Cs

17 H∙H↔H*∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

Covalently bonded by loosened O6–H–N1
and N1–H–O6 covalent bridge

C2h/C2h C2h

18 H*∙H↔H∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’, Zhurakivsky, & Hovorun, 2013c)

Symmetrical covalently bonded by loosened
O6–H–O6 and N1–H–N1 covalent bridge

Cs/Cs C2v

19 H·A↔H*·A* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2014d)

Covalently bonded by loosened O6–H–N6
covalent bridge

Cs/Cs Cs

20 T·2AP*↔T*·2AP (Brovarets’ & Pérez-
Sánchez, 2016; Brovarets’ et al., 2017a)

Covalently bonded by loosened N3–H–N2
covalent bridge

Cs/Cs Cs

21 G·2AP*↔G*·2AP (Brovarets’ & Pérez-
Sánchez, 2016; Brovarets’ et al., 2017a)

Covalently bonded by loosened N1–H–N2
covalent bridge

C1/C1 C1
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Hovorun, 2013a), G∙G*syn↔G*∙G*syn (Brovarets’ &
Hovorun, 2014a) and G·2AP*↔G*·2AP (Brovarets’ &
Pérez-Sánchez, 2016; Brovarets’ et al., 2017a)), Cs

(A∙T↔A*∙T* (Brovarets’ & Hovorun, 2014b, 2015h),
A∙A*↔A*∙A (Brovarets’, Zhurakivsky, & Hovorun,
2013b), A∙C*↔A*·C (Brovarets’ & Hovorun, 2015a),
G*∙T↔G∙T* (Brovarets’, & Hovorun, 2015b, 2015c),
H∙C↔H*∙C* (Brovarets’ & Hovorun, 2013c; Brovarets’
et al., 2013a), H*∙T↔H∙T* (Brovarets’ & Hovorun,
2013c; Brovarets’ et al., 2013a), H·A↔H*·A* (Brovar-
ets’ & Hovorun, 2013c; Brovarets’ et al., 2014d), and

T·2AP*↔T*·2AP (Brovarets’ & Pérez-Sánchez, 2016;
Brovarets’ et al., 2017a)) and C2h (H∙H↔H*∙H* (Bro-
varets’ & Hovorun, 2013c; Brovarets’ et al., 2013a)). It
was also found two cases, when TS has lower symmetry
(C1), than initial and terminal, tautomerized complex
(Cs): A*∙Asyn↔A∙A*syn (Brovarets’ et al., 2014b) and
A*∙G*syn↔A∙G*syn (Brovarets’ & Hovorun, 2014c). At
the same time, it was registered two cases, when TS has
higher symmetry (C2v) than initial and terminal, tau-
tomerized complexes: C1 (T∙T*↔T*∙T (Brovarets’
et al., 2014a)) and Cs (H∙H*↔H*∙H (Brovarets’ &

Table 3. Characteristic features of the zones of the reagent, product, and TS of the tautomerization reactions via the DPT in the H-
bonded nucleobase pairs obtained at the B3LYP/6–311++G(d,p) level of theory in the free state.

N Tautomerization reaction via the DPT
Number
of KPs

Type of
tautomerization

reaction

Width of zone, Bohr
Degree of the

asyncrony*, BohrReactant TS Product

1 A∙T↔A*∙T* (Brovarets’ & Hovorun, 2015h) 9 Asynchronous
concerted

4.07 4.15 0.58 3.87

2 G∙C↔G*∙C* (Brovarets’ & Hovorun, 2014e) 9 Asynchronous
concerted

7.53 0.95 6.04 0.11

3 G·T↔G*·T* (Brovarets’ et al., 2015) 9 Asynchronous
concerted

7.22 1.59 0.99 1.23

4 A∙A*↔A*∙A (Brovarets’, Zhurakivsky, &
Hovorun, 2013b)

9 Synchronous
concerted

2.74 0.62 2.74 0.00

5 A∙G↔A*∙G* (Brovarets’ et al., 2014c) 8 Asynchronous
concerted

8.34 3.98 2.62 3.46

6 G·G*↔G*·G (Brovarets’ & Hovorun, 2014d) 9 Asynchronous
concerted

24.84 1.08 6.56 0.50

7 A∙C*↔A*·C (Brovarets’ & Hovorun, 2015a) 9 Asynchronous
concerted

4.37 1.86 3.69 1.10

8 G*∙T↔G∙T* (Brovarets’, & Hovorun, 2015b,
2015c)

9 Asynchronous
concerted

4.06 2.26 3.39 1.68

9 C·C*↔C*·C (Brovarets’ & Hovorun, 2013b) 9 Asynchronous
concerted

6.91 1.18 6.27 0.06

10 C∙T↔C*∙T* (Brovarets’ & Hovorun, 2013a) 9 Asynchronous
concerted

5.86 3.80 3.36 3.12

11 T∙T*↔T*∙T (Brovarets’ et al., 2014a) 5 Synchronous
concerted

8.70 0.58 8.70 0.00

12 G∙G*syn↔G*∙G*syn (Brovarets’ & Hovorun,
2014a)

8 Asynchronous
concerted

8.11 0.97 3.39 0.55

13 A*∙Asyn↔A∙A*syn (Brovarets’ et al., 2014b) 8 Asynchronous
concerted

6.61 1.34 3.49 0.84

14 A*∙G*syn↔A∙G*syn (Brovarets’ & Hovorun,
2014c)

9 Asynchronous
concerted

3.27 5.79 3.42 5.17

15 H∙C↔H*∙C* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

9 Asynchronous
concerted

4.14 1.45 2.79 0.57

16 H*∙T↔H∙T* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

9 Asynchronous
concerted

5.44 1.01 4.31 0.01

17 H∙H↔H*∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a)

6 Asynchronous
concerted

6.30 0.54 3.17 0.14

18 H*∙H↔H∙H* (Brovarets’ & Hovorun, 2013c;
Brovarets’, Zhurakivsky, & Hovorun, 2013c)

5 Synchronous
concerted

5.35 0.52 5.35 0.00

19 H·A↔H*·A* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2014d)

9 Asynchronous
concerted

4.75 3.71 2.08 3.19

20 T·2AP*↔T*·2AP (Brovarets’ & Pérez-Sánchez,
2016; Brovarets’ et al., 2017a)

9 Asynchronous
concerted

3.76 5.27 2.87 4.79

21 G·2AP*↔G*·2AP (Brovarets’ & Pérez-Sánchez,
2016; Brovarets’ et al., 2017a)

9 Asynchronous
concerted

6.02 1.70 6.69 1.18

*This parameter we have defined by the formula ||IRC(KP8)|-| IRC(KP2)||.
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Hovorun, 2013c; Brovarets’, Zhurakivsky, & Hovorun,
2013c)).

In the vast majority of cases TSs represent them-
selves structures stabilized by one (TSA∙T↔A*∙T*,
TSG·T↔G*·T*, TSA∙G↔A*∙G*, TSG·G*↔G*·G, TSA∙C*↔A*·C,
TSG*∙T↔G∙T*, TSC∙T↔C*∙T*, TSG∙G*syn↔G*∙G*syn, TSA*∙A-
syn↔A∙A*syn, TSA*∙G*syn↔A∙G*syn, TSH*∙T↔H∙T*,
TSH·A↔H*·A*, TST·2AP*↔T*·2AP, TSG·2AP*↔G*·2AP) or
two (TSG·C↔G*·C*, TST∙T*↔T*∙T, TSH∙H↔H*∙H*,
TSH*∙H↔H∙H*) loosened A–H–B covalent bridges. In the
cases of the TST·T*↔T*·T, TSG∙G*syn↔G*∙G*syn, TSA*∙Asy-
n↔A∙A*syn, TSH·A↔H*·A*, and TSH*∙H↔H∙H* these bridges
are symmetrical. It was fixed three cases of tautomeriza-
tion – A∙A*↔A*∙A (Brovarets’, Zhurakivsky, &
Hovorun, 2013b), C∙C*↔C*∙C (Brovarets’ & Hovorun,
2013b), H∙C↔H*∙C* (Brovarets’ & Hovorun, 2013c;
Brovarets’ et al., 2013a) – controlled by the TSs, which
are asymmetric tight ion pairs A+∙A-, C-∙C+, and H-∙C+,
with the quite high energy of stabilization exceeding
100 kcal∙mol−1 (Figure 1, Table 2).

This methodology of the sweeps of the physicochem-
ical parameters enables us to obtain the profiles of the
intermolecular interactions (AH···B H-bonds, in particu-
lar non-classical CH···O/N (Brovarets’, Yurenko, &
Hovorun, 2013, 2015), loosened A–H–B covalent
bridges and attractive A···B van der Waals contacts
(Matta & Boyd, 2007)) along the IRC.

Based on these data (Figure 5), we have obtained
interesting regularities and generalizations.

This methodology enables to make an objective con-
clusion about the character of the tautomerization (con-
certed, synchronous, or asynchronous), quantitatively
estimate the cooperativity of the specific intermolecular
interactions (AH···B H-bonds, in particular non-classical
CH···O/N, loosened A–H–B covalent bridges, and attrac-
tive A···B van der Waals contacts), sequentially chang-
ing each other along the IRC of tautomerization, and
trace how these interactions are grouped into the patterns
(three and five) and how they consistently substitute each
other along the IRC of tautomerization. Energy of the
intermolecular specific contacts (in particular, H-bonds or

Table 4. Electron-topological and structural characteristics of the intermolecular bonds revealed in the nine key points (KPs) and the
polarity of the latters along the IRC of the biologically important A∙C*↔A*∙C tautomerization via the DPT obtained at the B3LYP/
6–311++G(d,p) level of theory in the free state (see Figs. 7, 8) (Brovarets’ & Hovorun, 2015a).

Complex AH∙∙∙B H-bond/A–H/H–B covalent bond ρa Δρb 100∙εc dA∙∙∙B
d dH∙∙∙B

e ∠AH∙∙∙Bf μg

KP 1 (A∙C*) N6H···N4 0.029 0.082 7.626 2.983 1.959 173.8 3.10
N3H···N1 0.040 0.093 6.584 2.895 1.852 178.9
C2H···O2 0.005 0.017 1.478 3.628 2.798 133.1

KP 2 (ΔρN1···H = 0) N6H···N4 0.062 0.107 6.245 2.702 1.647 175.2 1.99
N3H···N1 0.110 0.000 4.165 2.624 1.423 179.9
C2H···O2 0.007 0.022 1.696 3.443 2.632 131.0

KP 3 (ρN1-H = ρH-N3) N6H···N4 0.064 0.101 6.203 2.698 1.634 175.3 1.79
N3-H-N1 0.148 −0.190 3.534 2.626 1.310 179.8
C2H···O2 0.007 0.022 1.444 3.444 2.630 131.2

KP 4 (ΔρH···N3 = 0) N6H···N4 0.068 0.093 6.117 2.690 1.612 175.6 2.51
N1H···N3 0.106 0.000 4.960 2.637 1.446 179.3
C2H···O2 0.007 0.022 1.269 3.449 2.633 131.5

KP 5 (ΔρH···N4 = 0) N6H···N4 0.111 0.000 4.982 2.597 1.419 177.9 2.24
N1H···N3 0.076 0.077 5.737 2.675 1.574 177.9
C2H···O2 0.007 0.021 1.674 3.484 2.671 131.3

KP 6 (TSA∙C*↔A*∙C) N1H···N3 0.075 0.082 5.782 2.677 1.582 177.9 2.01
C2H···O2 0.007 0.021 1.677 3.484 2.671 131.3

KP 7 (ρN6-H = ρH-N4) N6-H-N4 0.151 −0.202 4.016 2.590 1.294 177.9 1.81
N1H···N3 0.072 0.089 5.843 2.679 1.594 177.8
C2H···O2 0.007 0.021 1.681 3.484 2.672 131.2

KP 8 (ΔρN6···H = 0) N4H···N6 0.113 0.000 4.645 2.589 1.405 177.8 2.32
N1H···N3 0.069 0.098 5.913 2.681 1.608 177.8
C2H···O2 0.007 0.021 1.688 3.485 2.674 131.1

KP 9 (A*∙C) N4H···N6 0.037 0.092 7.133 2.905 1.866 176.2 3.83
N1H···N3 0.040 0.097 6.874 2.871 1.832 180.0
C2H···O2 0.005 0.017 2.163 3.583 2.763 132.2

aThe electron density at the (3,-1) BCP, a.u.
bThe Laplacian of the electron density at the (3,-1) BCP, a.u.
cThe ellipticity at the (3,-1) BCP.
dThe distance between A (H-bond donor) and B (H-bond acceptor) atoms of the AH···B H-bond, Å.
eThe distance between H and B atoms of the AH···B H-bond, Å.
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Figure 5. Profiles of the energy of the intermolecular H-bonds or van der Waals contacts estimated by the EML formula at the (3,-
1) BCPs (Espinosa et al., 1998; Mata et al., 2011; Matta et al., 2006) along the IRC of the tautomerization reactions via the DPT
obtained at the B3LYP/6–311++G(d,p) level of theory in the free state.
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van der Waals contacts) has been calculated by the Espi-
nosa–Molins–Lecomte formula (Espinosa, Molins, &
Lecomte, 1998; Mata, Alkorta, Espinosa, & Molins,

2011), which has been firstly applied for the DNA
dimers by Prof. Matta et al. (Matta, Castillo, & Boyd,
2006).

Figure 5. (Continued)
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First, these interactions could be grouped into the
specific patterns, that sequentially change each other
along the IRC of tautomerization (Brovarets’, 2010,
2015; Brovarets’ & Hovorun, 2013a, 2013b, 2013c,
2014a, 2014b, 2014c, 2014d, 2014e, 2015a, 2015b,
2015c, 2015d, 2015e, 2015f, 2015g, 2015h; Brovarets’
et al., 2013a, 2013b, 2013c, 2014a, 2014b, 2014c, 2014d,
2015; Brovarets’ & Pérez-Sánchez, 2016, 2017; Brovar-
ets’, Pérez-Sánchez, et al., 2016; Brovarets’, Voiteshenko,
et al., 2018; Brovarets’, Voiteshenko, Pérez-Sánchez,
et al., 2017a, 2018) (Figure 5). It was revealed three such
patterns for the synchronous DPT tautomerization, while
five – for the asynchronous (Figures 1, 5, Table 1, 2).
Secondly, neighboring antiparallel H-bonds strengthen
each other; in those cases, when neighboring H-bonds
become parallel, they cooperatively weaken each other
(Figures 1, 5). Using the profiles of the energies of the H-
bonds on IRC, it is easy to quantitively estimate their
cooperative or anti-cooperative properties.

In those cases, when tautomerization of the com-
plexes does not occur, as it takes place in the G·Asyn

DNA base mispair (Brovarets’ & Hovorun, 2014c), we
have developed quite simple methodology for the estima-
tion of the interdependence of the neighboring H-bonds,
that are involved in the stabilization of these complexes.
It consists in the forced stretching of the N6H and N1H
atomic groups – donors of the N6H···O6 and N1H···N7
H-bonds in the G·Asyn DNA base mispair, respectively,
with further sequential fixation of their length and geom-
etry optimization (Figure 6). As a result, we found out,
that the neighboring N6H···O6 and N1H···N7 H-bonds
are cooperative, strengthening each other (Figure 6).

Thirdly, it was established that the DPT processes are
assisted by the third specific intermolecular contact – H-
bond or attractive van der Waals contact, exposed into
the DNA minor groove, except the cases of the A*∙Asy-

n↔A∙A*syn (Brovarets’ et al., 2014b), A*∙G*syn↔A∙G*-

syn (Brovarets’ & Hovorun, 2014c), H∙H↔H*∙H*

Figure 5. (Continued)
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(Brovarets’ & Hovorun, 2013c; Brovarets’ et al., 2013a),
H*∙H↔H∙H* (Brovarets’ & Hovorun, 2013c; Brovarets’,
Zhurakivsky, & Hovorun, 2013c), H·A↔H*·A* (Brovar-
ets’ & Hovorun, 2013c; Brovarets’ et al., 2014d),
T·2AP*↔T*·2AP (Brovarets’ & Pérez-Sánchez, 2016;

Brovarets’ et al., 2017a), and G·2AP*↔G*·2AP (Bro-
varets’ & Pérez-Sánchez, 2016; Brovarets’ et al., 2017a)
tautomerization reactions (Figures 1, 5). Fourthly and
lastly, graphs of the ellipticities of the H-bonds or attrac-
tive van der Waals contacts demonstrate the appearance
or disappearance in a certain range of the IRC tautomer-
ization. In those cases, when these specific intermolecular
interactions switch, that is transform one into the other,
ellipticity ε does not show any anomalies (Figures 8(c)
and 9). Conversely, when specific intermolecular interac-
tions are included or excluded, then at approaching to
these points, their ellipticity sharply increases (Figure 9),
that points on the dynamical non-stability of their interac-
tions.

Transition from vacuum into the low polar contin-
uum with ε = 4, characteristic for the hydrophobic inter-
faces of the protein–DNA complexes (Mertz &
Krishtalik, 2000; Petrushka, Sowers, & Goodman, 1986),
does not significantly influence the course of these tau-
tomerization reactions and does not change the character
of the obtained conlcusions and generalizations.

It draws the attention that in the course of the afore-
mentioned reactions the heterocycles of the nucleotide
bases hold their planarity, despite their ability to bend
quite easily (Govorun et al., 1992; Hovorun, Gorb, &
Leszczynski, 1999; Nikolaienko, Bulavin, & Hovorun,
2011), and the methyl group of the T DNA base does
not change its orientation.

The other, purely technical and methodological con-
clusion concerns the used B3LYP/6–311++G(d,p) level

Figure 6. Graphs of the energy of the H-bonds EHB, estimated
by the EML formula (Espinosa et al., 1998; Mata et al., 2011;
Matta et al., 2006), at the (3,-1) BCPs of the H-bonds in the
G∙Asyn DNA base mispair, as a function of the distance dNH
obtained at the B3LYP/6–311++G(d,p) level of theory in the
free state. The forcibly changed distances dN1H/N6H are shown
in bold (Brovarets’ & Hovorun, 2014c).

Figure 7. Geometric structures of the nine key points (KPs) describing the evolution of the biologically important A∙C*↔A*∙C tau-
tomerization via the DPT along the IRC obtained at the B3LYP/6–311++G(d,p) level of theory in the free state (Brovarets’ &
Hovorun, 2015a). Coordinates of the KPs (in Bohr) are presented below them in brackets. The dotted lines indicate AH···B H-bonds,
while continuous lines show covalent bonds (their lengths are presented in angstroms). Carbon atoms are in light blue, nitrogen in
dark blue, hydrogen in gray, and oxygen in red.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Profiles of: (a) the electron density ρ; (b) the Laplacian of the electron density Δρ, (c) the ellipticity ε at the (3,-1) BCPs,
(d) the distance dA∙∙∙B between the electronegative A and B atoms; (e) the distance dAH/HB between the hydrogen and electronegative
A or B atoms, (f) the angle ∠AH···B of the covalent and hydrogen bonds, (g) the distance R(H1–H9) between the H1 and H9 glyco-
sidic hydrogens and (h) the α1 (∠N9HH) and α2 (∠N1HH) glycosidic angles along the IRC of the biologically important
A∙C*↔A*∙C tautomerization via the DPT obtained at the B3LYP/6–311++G(d,p) level of theory in the free state (Brovarets’ &
Hovorun, 2015a).
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Figure 9. Profiles of the ellipticity ε of the intermolecular H-bonds and attractive van der Waals contacts at the (3,-1) BCPs along
the IRC of the tautomerization reactions via the DPT obtained at the B3LYP/6–311++G(d,p) level of theory in the free state. All key
points as vertical lines are presented for each profile.
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of QM theory. Comparison of the results obtained at this
level with similar data obtained at the MP2/6–311++G(d,
p) level of theory (Brovarets’ & Hovorun, 2014b, 2014e,

2015a, 2015c) indicates that the first of them is adequate
and moreover represents itself the shortest way to MP2
results (Danilov, Anisimov, Kurita, & Hovorun, 2005;

Figure 9. (Continued)
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Lozynski, Rusinska-Roszak, & Mack, 1998; Matta,
2010).

Finally, we would like to note that proposed by us
approaches to the analysis of the atomistic mechanisms
are already successfully applied by other authors (Inos-
troza-Rivera et al., 2015). We hope that they will be
intensively used in the future as for the research pur-
poses, in particular at the studying of the mechanisms of
the tautomerization of the H-bonded complexes of any
kind and structure (Jin et al., 2017, 2018; Palafox &
Rastogi, 2016; Shi, Jiang, Zhang, & Wang, 2017; Tolosa
et al., 2017, 2018; Yang et al., 2017; Yepes et al., 2013a,
2013b), so in the teaching practice.

It would become clear in the process of the accumu-
lation and generalization of the results of the investiga-
tion, whether the H-bonded pairs of nucleotide bases are
similar or different from the other H-bonded complexes.

Conclusions

Obtained generalizations enable us to arrive to at least
four important conclusions.

(1) Elaborated and implemented into the scientific
practice our new conception based on the sweeps
of the physicochemical parameters, such as elec-
tronic energy E, the first derivative of the elec-
tronic energy by the IRC – dE/dIRC, the dipole
moment of the base pair μ, the distances dA∙∙∙B,
dAH/HB, and the angle ∠AH···B of the inter-
molecular H-bonds, the electron density ρ, the
Laplacian of the electron density Δρ, ellipticity ε,
and the energy EHB at the (3,-1) bond critical
points of the intrapair H-bonds, the NBO charges
qNBO of the hydrogen atoms involved in the tau-

Figure 9. (Continued)
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(2) Tautomerization reaction via the DPT can be con-
sidered successful in those and only in those case
if the tautomerized complex is a dynamically
stable system, during the lifetime of which low-
frequency intermolecular vibrations could
develop. Exactly the dynamic stability of the tau-
tomerized pairs is the key to their spontaneous
dissociation into the monomers with changed tau-
tomeric status.

(3) It is possible to speak about the mutagenic tau-
tomerization of certain pairs of nucleotide bases
only in that case, when the lifetime of the tau-
tomerized base pairs exceeds the time spent by
the DNA replication machinery on their forced
dissociation (~10−9 s). In the opposite case short-
lived tautomers of the nucleotide bases pretend-
ing on the role of the mutagenic would simply
“slip out from the hands” of the DNA replication
machinery.

(4) An urgent task for the future is to take into
account the quantum tunneling effects in the
symmetric complexes, that tautomerize (Brovar-
ets’ & Hovorun, 2015h) – A∙A*↔A*∙A (Bro-
varets’, Zhurakivsky, & Hovorun, 2013b),
G∙G*↔G*∙G (Brovarets’ & Hovorun, 2014d),
T∙T*↔T*∙T (Brovarets’ et al., 2014a),
C∙C*↔C*∙C (Brovarets’ & Hovorun, 2013b),
and H∙H*↔H*∙H (Brovarets’ & Hovorun,
2013c; Brovarets’, Zhurakivsky, & Hovorun,
2013c). Tunneling is principally impossible for
the other cases of tautomerization analyzed in
this Review (Brovarets’ & Hovorun, 2015h).
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