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1. Introduction
The integration of Artificial Intelligence (AI) and 

Machine Learning (ML) revolutionises the field of drug 
discovery and development, leveraging the strengths of 
computer science, mathematics, and physics. Slow pro-
gression, significant costs, and notable failure rates mar 
traditional approaches to drug development. The average 
development timeline for a small-molecule drug is 
around 15 years, with costs exceeding $2 billion [1]. 
These numbers have escalated, reaching $6.16 billion per 
new drug developed by 2023 [2–4]. Extensive trial and 
error contribute to the lengthy timelines and high finan-
cial burdens.

AI and ML technologies can significantly enhance 
the drug discovery process. By facilitating virtual screen-
ing, drug design, and drug-target interaction modelling, 
AI enables rapid and accurate predictions of biological ac-
tivities [5]. ML algorithms can analyse complex biological 
data, including genomic and proteomic information, to 
identify novel drug targets and biomarkers [6, 7]. This 
data-driven approach accelerates the discovery process, 
improving precision and personalisation of treatments.

Despite these advantages, AI/ML applications in 
drug development face challenges related to data quality, 
algorithmic bias, and model interpretability [8, 9]. Ad-

dressing these issues is crucial to realising these technol-
ogies’ full potential.

AI and ML in virtual screening and drug design.
The literature review found that AI technologies, 

particularly machine learning (ML) and deep learn-
ing (DL), have significantly advanced virtual screening 
and drug design. The research proves that these technol-
ogies have notably improved virtual screening, which 
involves evaluating large libraries of chemical com-
pounds to identify those likely to bind to a target protein. 
Antonio Lavecchia provided a detailed view of machine 
learning techniques within the context of ligand-based 
virtual screening (LBVS) [10]. The study discussed re-
cent developments in five advanced machine learning 
approaches commonly used in chemoinformatics and 
drug discovery: support vector machines (SVM), deci-
sion trees (DT), k-nearest neighbours (k-NN), naive 
Bayesian methods, and artificial neural networks (ANNs), 
which surpass traditional methods. Joseph Gomes and 
colleagues used empirical scoring functions to predict 
drug-like molecules’ potency and binding affinity [11]. 
While testing on the PDBBind dataset, they showed that 
atomic convolutional networks outperformed or matched 
traditional methods, achieving experimental accuracy. 
Unlike previous systems, these networks were end-to-
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end and fully differentiable, representing a new 
deep-learning model for structure-based bioactivity pre-
diction. In drug design, AI has optimised the structure of 
identified compounds to enhance their efficacy and safe-
ty. Alex Zhavoronkov and his research team used gener-
ative adversarial networks (GANs) and reinforcement 
learning to rapidly iterate molecular designs, optimising 
multiple pharmacological properties simultaneously and 
showing marked improvements in speed and accuracy 
compared to traditional methods [12]. The scientific 
studies [13, 14] demonstrated AI’s potential to discover 
new classes of antibiotics, such as halicin, effective 
against drug-resistant pathogens, highlighting AI’s capa-
bility to innovate and expand available therapeutics. 

ML algorithms in biological data analysis.
The literature analysis found that machine learn-

ing (ML) algorithms have become crucial in analysing 
complex biological data, especially in genomics and pro-
teomics, to identify novel drug targets and biomarkers. 
ML’s capacity to manage large datasets and uncover intri-
cate patterns makes it indispensable for genomic data 
analysis. For instance, Maxwell W. Libbrecht and William 
Stafford Noble demonstrated that support vector machines 
and random forests could predict regulatory elements in 
the human genome, aiding in the identification of novel 
genomic regions linked to gene regulation and genetic 
diseases [15]. Similarly, Jian Zhou and Olga G. Troyanska-
ya developed DeepSEA. This deep learning algorithm 
significantly improved the accuracy of predicting deleteri-
ous mutations in non-coding variants, thereby identifying 
potential genetic biomarkers [16]. In proteomics, ML has 
been instrumental in analysing proteins’ dynamic and 
structurally diverse landscape. Shivani Tiwary and col-
leagues used deep learning models to enhance peptide 
fragmentation pattern prediction in mass spectrometry 
data, improving protein identification accuracy and speed 
and facilitating biomarker discovery [17]. Rita Casadio, 
Pier Luigi Martelli and Castrense Savojardo applied con-
volutional neural networks (CNNs) to analyse protein-pro-
tein interaction networks, identifying critical nodes that 
could serve as drug targets, thus highlighting ML’s utility 
in understanding complex biological interactions [18]. 

ML algorithms have also markedly enhanced the 
precision and personalisation of treatments. Konstantina 
Kourou and co-authors showed how ML models could pre-
dict cancer prognosis and treatment outcomes based on ge-
nomic and clinical data, enabling personalised treatment 
strategies [19]. In 2017, a scientific team led by Andre Esteva 
illustrated deep learning’s application in dermatology by 
training an ML model on clinical images to classify skin le-
sions with dermatologist-level accuracy, exemplifying ML’s 
role in personalised medical diagnoses and treatments [20]. 

Optimising drug development stages with AI.
Research indicates that AI significantly optimises 

various stages of drug development, including target 
identification, ADME (Absorption, Distribution, Metab-
olism, Elimination) and toxicity prediction, lead optimis-
ation, drug repositioning, and clinical trial design. Stud-
ies demonstrate substantial improvements in efficiency, 
accuracy, and success rates through AI applications.

AI enhances target and hit identification by analysing 
vast datasets to discover novel drug targets. Hongming 
Chen and colleagues used deep learning to predict pro-
tein-ligand interactions, significantly improving target iden-
tification accuracy [21]. Izhar Wallach, Michael Dzamba 
and Abraham Heifets showed that convolutional neural 
networks (CNNs) predict molecular activity more accurate-
ly than conventional methods, streamlining hit identifica-
tion [22]. AI advances ADME and toxicity prediction, 
which is crucial for drug safety and efficacy. Research-
ers [23, 24] developed a machine-learning model that im-
proved ADME prediction accuracy over traditional meth-
ods. Claudio N. Cavasotto and Valeria Scardino used deep 
learning for toxicity prediction, achieving acceptable accu-
racy with deep neural networks (DNNs) and CNNs. At the 
same time, gradient-boosted decision trees (GBDT) and 
support vector machines (SVM) performed better on small-
er, nonlinear datasets [25]. Their model identified toxicolog-
ical endpoints, reducing late-stage failures. AI expedites 
lead optimisation by refining drug candidates. Alex 
Zhavoronkov and his research team used generative adver-
sarial networks (GANs) and reinforcement learning to opti-
mise pharmacological properties, enhancing drug efficacy 
and safety [12]. Seojin Nam and colleagues applied machine 
learning to biomedical literature and clinical data, identify-
ing new therapeutic uses for existing drugs, thus accelerat-
ing development timelines and reducing costs [26]. AI 
transforms clinical trial design and management through 
predictive analytics. Ece Kavalci and Anthony Hartshorn 
demonstrated that machine learning algorithms could pre-
dict clinical trial outcomes using historical data from 
420,268 records, improving trial design and patient selec-
tion. This is evidenced by a ROC AUC score of 0.80 and 
balanced accuracy of 0.70 [27]. Andre Esteva and his re-
search team highlighted AI integration in clinical work-
flows, enhancing the analysis of medical imaging and vid-
eos and improving treatment in cardiology, pathology, 
dermatology, and ophthalmology [28].

Given the above, implementing Artificial Intelli-
gence (AI) and Machine Learning (ML) in various fields, 
including healthcare and drug discovery, faces significant 
challenges related to data quality, algorithmic bias, and 
model interpretability. Many researchers identified data 
quality issues, such as missing values and inconsistent en-
tries, significantly degrade model performance [29–31]. 
Marzyeh Ghassemi and colleagues specifically noted that 
electronic health records (EHRs) often contain these defi-
ciencies, adversely impacting the accuracy and reliability of 
AI models [29]. Additionally, Swarnendu Ghosh and col-
leagues proposed leveraging synthetic data generation in 
the image segmentation domain to enhance data complete-
ness and diversity, thereby mitigating these challenges [31]. 
Jessica Vamathevan and colleagues highlighted that data 
quality and bias in training datasets can lead to biased pre-
dictions, stressing the need for high-quality, diverse datasets 
to train robust AI models [14].

Regarding algorithmic bias, studies have shown 
that AI and ML models can exhibit racial bias. Authors 
of [32] found that an AI-based algorithm favoured the 
health needs of white patients over black patients. Ad-
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dressing algorithmic bias involves several approaches, 
such as ensuring diverse and representative training 
datasets, re-sampling, re-weighting, and adversarial 
debiasing to mitigate bias in training data.

Moreover, studies indicate that model interpretability 
is critical for gaining trust and understanding in AI-driven 
decisions, particularly in high-stakes fields such as health-
care and finance. Complex models, like deep learning net-
works, often act as ‘black boxes,’ making it difficult to un-
derstand their decision-making processes. This lack of 
transparency can hinder the adoption of AI systems. To 
address this issue, several methods have been developed to 
improve model interpretability. Efforts to develop more in-
terpretable models, such as those by [33] and SHAP (Shap-
ley Additive exPlanations) [34], ensured the clinical reliabil-
ity and acceptance of AI-driven drug discovery processes. 
Marco Tulio Ribeiro, Sameer Sing, and Carlos Guestrin 
proposed LIME (Local Interpretable Model-agnostic Expla-
nations), which explains individual predictions of any clas-
sifier by approximating them locally with an interpretable 
model [35]. 

Given the critical need to address challenges in data 
quality, algorithmic bias, and model interpretability for ef-
fective AI implementation, this research aims to evaluate the 
functionality of selected AI-driven no-code applications in 
drug discovery. These applications were chosen based on 
criteria such as technological advancement, user adoption, 
and relevance to drug discovery. The study will involve 
pharmaceutical experts to assess each application’s usability 
and the efficacy of its drug suggestions, leveraging recent 
advancements in artificial intelligence and machine learning.

2. Planning (methodology) of research
To achieve the aim of testing the functionality of se-

lected AI-driven no-code applications designed for drug 
discovery, this research employed a comprehensive and 
multi-faceted evaluation methodology [36]. The seven re-

search phases and their objectives are visualised in Fig. 1. In 
the selection of applications phase, the study conducted a 
systematic literature review and market analysis to compile 
a list of relevant applications. These applications were se-
lected based on criteria such as technological advancement, 
user adoption, and relevance to drug discovery. The applica-
tions chosen for this study included Insilico Medicine’s 
Pharma.AI [37], Atomwise [38], Schrödinger’s LiveDe-
sign [39], Exscientia [40], BenevolentAI [41], and Cycli-
ca [42]. In Phase 2, the initial setup and configuration, the 
research team installed and configured the applications ac-
cording to the developers’ guidelines. This step ensured that 
all necessary datasets and computational resources were 
available and verified that each application was functioning 
correctly before formal testing commenced.

Following this, five test cases (see Appendix 1) 
were created based on common drug discovery tasks such 
as target identification, virtual screening, drug design, and 
drug-target interaction modelling. Those five standardised 
test cases were considered an optimal starting point for the 
research, as they provided a structured and manageable 
approach to evaluate the functionality and effectiveness of 
the selected AI-driven no-code applications. Diverse sce-
narios were included to assess the applications’ capabili-
ties across different areas of drug development, including 
target identification, virtual screening, drug design, lead 
optimisation, and toxicity prediction. In Phase 4, the test 
cases were systematically executed, with each step and 
outcome carefully documented. The performance of the 
applications was evaluated using metrics such as interface 
design, user experience, accuracy, speed, ease of use, re-
source utilisation, and scalability. The data drawn from 
these metrics were analysed using descriptive statistics, a 
repeated measures ANOVA test, and a post hoc Tukey’s 
Honestly Significant Difference (HSD) test. The data ob-
tained from the interviews (see the questionnaire in Ap-
pendix 2) were analysed using thematic analysis.

Fig. 1. The visualisation of the research phases and their objectives

•Objective: To identify and select a representative sample of AI-driven no-code applications
currently available in the market.

Phase 1. Selection of Applications

•Objective: To prepare each application for testing by ensuring proper setup and
configuration.

Phase 2. Initial Setup and Configuration

•Objective: To develop a series of standardised test cases to evaluate the applications.
Phase 3. Test Case Design

•Objective: To execute the test cases on each application to assess their functionality.
Phase 4. Application Testing

•Objective: To engage pharmaceutical experts to provide an independent assessment of the
applications.

Phase 5. Expert Evaluation

•Objective: To analyse the collected data to draw meaningful conclusions.
Phase 6. Data Analysis

•Objective: To compile the findings into a comprehensive report and provide
recommendations.

Phase 7. Reporting and Recommendations
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The effectiveness of the applications in drug dis-
covery tasks was assessed through both quantitative and 
qualitative data collection approaches. A panel of five 
experienced pharmaceutical researchers and industry 
professionals was recruited in the subsequent phase. The 
experts were provided with detailed reports of the test 
results and given access to the applications. Following 
this, interviews were administered to gather expert opin-
ions on the usability and efficacy of each application’s 
drug suggestions.

3. Materials and methods
The scientific research was conducted at the Bogo-

molets National Medical University from September 1, 
2023 to June 30, 2024.

The materials for this research included five stan-
dardised test scenarios (see Appendix 1) to evaluate the 
functionality and effectiveness of selected AI-driven no-
code applications in drug discovery. The decision to im-
plement five test cases was grounded in several key 
considerations:

1. Focused evaluation. The chosen five scenarios 
allowed for an in-depth assessment of each application’s 
capabilities across crucial areas of drug discovery, such 
as target identification, virtual screening, drug design, 
lead optimisation, and toxicity prediction.

2. Manageability. Given the typical scope of aca-
demic research, limiting the number of scenarios to five 
ensured that the evaluation remained comprehensive yet 
manageable. This approach facilitated detailed analysis 
and reporting without overwhelming the research process.

3. Coverage of key tasks. The scenarios were stra-
tegically selected to cover the most critical and represen-
tative tasks in drug discovery. This selection provided a 
holistic view of each application’s strengths and weak-
nesses, ensuring that the evaluation was both thorough 
and relevant to real-world drug discovery challenges.

The evaluation of the AI-driven no-code applica-
tions was structured around a set of rigorous criteria, 
assessed through both quantitative and qualitative mea-
sures such as usability assessment based on the criteria 
that follow: the ease of use, interface design, user experi-
ence, and scalability were key aspects evaluated by phar-
maceutical experts. An evaluation criteria worksheet/
checklist was provided to the experts, who rated the us-
ability of each application using a 5-point Likert scale. 
The scale ranged from 1 (very difficult to use) to 5 (very 
easy to use), allowing for subjective user experience as-
sessments. The efficacy of drug suggestions was mea-
sured by comparing the predicted drug candidates 
against established benchmarks, specifically in terms of 
binding affinity, ADME properties, and toxicity predic-
tions. To perform those measurements, experts were 
tasked with evaluating the accuracy of the drug sugges-
tions using the Likert scale. The scale measured per-
ceived accuracy, speed, resource utilisation, and scalabil-
ity, with the following categories: 

1) accuracy: 1 (not at all accurate) to 5 (extremely 
accurate); 

2) speed: 1 (very slow) to 5 (very fast); 

3) resource utilisation: 1 (highly inefficient) to 5 
(highly efficient); 

4) scalability: 1 (poor scalability) to 5 (excellent 
scalability). 

The performance of each application was system-
atically documented during the testing phase. Each step 
of the process, along with the outcomes, was recorded to 
ensure a comprehensive analysis. The performance met-
rics were gathered using the Likert scale, allowing for a 
nuanced understanding of how each application handled 
specific tasks in drug discovery.

The methodology for evaluating the functionality of 
selected AI-driven no-code applications in drug discovery 
is presented in Table 1. This methodology involved five 
predesigned scenarios, each designed to assess key aspects 
of the drug development process, including input data, 
process, output, validation and comparison, and real-world 
examples. In each scenario, input data was collected from 
publicly available sources and preprocessed to remove 
missing values, inconsistencies, and errors. Categorical 
variables were converted into numerical features, and nu-
merical variables were standardised to have a mean of 0 
and a standard deviation of 1. The data was curated to 
ensure its reliability and relevance by removing duplicates, 
incomplete, or irrelevant data, verifying the accuracy and 
consistency of the data sources, and integrating additional 
information to address any gaps or inconsistencies. The 
preprocessed data was then transformed into a set of fea-
tures used as input for machine learning models, which 
were trained using various techniques to produce accurate 
and meaningful results.

Across all scenarios outlined in Table 1, the evalu-
ation process leveraged a combination of machine learn-
ing models (SVMs, Random Forests, GBMs) and dock-
ing algorithms (Autodock Vina, Glide) to predict various 
aspects of drug discovery, such as target identification, 
binding affinity, and toxicity. The models were trained 
on high-dimensional data and validated against known 
outcomes, ensuring they could provide accurate, reliable 
predictions. These approaches were integral to optimis-
ing drug candidates by improving their pharmacokinetic 
properties and safety profiles, making them suitable for 
further development.

Data collection and analysis.
This study employed both quantitative and qualita-

tive approaches to data collection. Quantitative data were 
collected using researcher-designed scenarios that evaluat-
ed various performance metrics of the AI-driven no-code 
applications in drug discovery. Each application systemat-
ically administered these scenarios to measure metrics 
such as ease of use, interface design, user experience, 
speed, resource utilisation, accuracy, and scalability.

Qualitative data were gathered through surveys 
conducted with a panel of experienced pharmaceutical re-
searchers and industry professionals. These experts were 
provided with detailed reports of the test results and access 
to the applications. The surveys captured their opinions 
and insights on the usability and efficacy of each applica-
tion’s drug suggestions, providing valuable subjective 
feedback to complement the quantitative findings.
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The collected data were analysed using Jamovi 
statistical software [43]. The analysis included descrip-
tive statistics to summarise the data and Repeated Mea-
sures ANOVA to assess the variability in performance 
across different applications and metrics. Post hoc tests, 
specifically Tukey’s Honestly Significant Differ-
ence (HSD), were conducted following the ANOVA to 
identify which specific groups (applications) differed 
significantly from each other. This comprehensive analy-
sis provided insights into the relative strengths and weak-
nesses of each application in supporting drug discovery 
tasks.

4. Results
The study’s findings, derived from the analysis of 

the selected AI-driven applications’ performance metrics 
and expert evaluations, are presented in the following 
order: results from the descriptive statistics, the repeated 
measures ANOVA, the Tukey HSD post hoc test, and 
interview-based results.

Descriptive statistics results.
The descriptive data analysis, based on mean val-

ues from metrics such as ease of use, interface design, 
user experience, speed, resource utilisation, accuracy, 
and scalability, yielded the following overall conclusions:

1. Top performers. Insilico Medicine’s Pharma.AI 
and Atomwise demonstrated strong performance across 
most evaluated metrics. Pharma.AI excelled particularly 
in interface design, user experience, and speed, indicat-
ing its suitability for user-centric and efficient operations. 
Atomwise scored highly in ease of use and scalability, 
suggesting it is well-suited for a broad range of drug 
discovery tasks due to its accessibility and ability to han-
dle increasing data loads effectively.

2. Balanced performer. Schrödinger’s LiveDesign 
emerged as a balanced performer, with strengths in re-
source utilisation, accuracy, and interface design. These 
attributes make it a suitable option for environments 
where precise predictions are essential, and computation-
al resources may be limited.

Table 1
Workflow Scenarios for Evaluating AI-Driven No-Code Applications in Drug Discover

Scenario Apps tested Input data Analysis/ Process Output Validation and 
comparison Real-world examples

Scenario 
1: target 
identifica-

tion

Insilico Medi-
cine’s Pharma.
AI, Exscien-
tia & Benevo-

lentAI

Alzheimer’s disease: 
genomic and pro-

teomic data from 100 
patients.  

Breast cancer: exome 
sequencing and pro-
tein expression data 

from 50 patients

Analysed genomic/
proteomic data to 
identify mutations 
and differentially 

expressed proteins, 
mapping them 
to biological 

pathways to find 
potential drug 

targets

List of po-
tential drug 

targets ranked 
by relevance 
and drugga-

bility.

Compared 
identified targets 
against known 
targets in data-

bases like Drug 
Bank, OMIM, 

TTD

Alzheimer’s: target amy-
loid-beta metabolism.  

Breast cancer: target HER2 
overexpression

Scenario 
2: virtual 
screening

Insilico Medi-
cine’s Pharma.
AI & Atom-

wise

Target protein: EGFR 
3D structure (PDB: 
1M17). Chemical 
Library: 1,000,000 
compounds from 

ZINC15

Dock compounds 
into EGFR bind-

ing site, calculate 
binding affinities, 
and rank based on 
predicted affinity

Ranked list of 
compounds 
by predict-
ed binding 

affinity

Compare the top 
100 compounds 

with known 
EGFR inhibitors 
(e.g., Gefitinib)

EGFR Inhibitors: target 
EGFR in cancer therapy

Scenario 
3: drug 
design

Insilico Medi-
cine’s Pharma.
AI, Atomwise, 
Schrödinger’s 
LiveDesign, 
Exscientia, 

BenevolentAI, 
Cyclica

Target protein: HIV-1 
protease (PDB: 

1HVR). Objectives: 
optimise for binding 
affinity, bioavailabili-
ty, and low toxicity

Generate small 
molecule candi-

dates and optimise 
iteratively for 
solubility, bio-

availability, and 
selectivity

10 novel small 
molecule can-
didates with 
detailed pro-

files, including 
drug-likeness 

(Lipinski’s 
Rule of Five)

Compare top 
designs with 

known inhibitors 
(e.g., Saquinavir) 
and validate with 
molecular dock-

ing and dynamics 
simulations

HIV-1 protease: design 
selective inhibitors with 
improved bioavailability.  
PD-L1 inhibitors: disrupt 
PD-1/PD-L1 interaction. 
ACE2 inhibitors: block 
SARS-CoV-2 binding to 

ACE2

Scenario 
4: lead 

optimisa-
tion

Insilico Medi-
cine’s Pharma.
AI, Atomwise, 
Schrödinger’s 
LiveDesign, 
Exscientia, 

BenevolentAI, 
Cyclica

Target proteins: VEG-
FR-2 (PDB: 4AGD), 

BACE1 (PDB: 2ZJM), 
MMP-9 (PDB: 4H1Q). 

Lead compounds: 
Sunitinib, LY2886721, 

Marimastat

Generate ana-
logues and opti-
mise for binding 

affinity, selectivity, 
and ADME prop-

erties

Optimised 
lead com-

pounds with 
improved 
profiles

Compare 
optimised 

compounds with 
original leads 
and existing 

drugs

Sunitinib: increase VEG-
FR-2 selectivity, reduce 

cardiotoxicity. LY2886721: 
Enhance BACE1 selectivity 

and reduce liver toxicity. 
Marimastat: improve MMP-

9 selectivity and reduce 
musculoskeletal toxicity

Scenario 
5: toxicity 
prediction

Insilico Medi-
cine’s Pharma.
AI, Schröding-

er’s LiveDe-
sign, Exscien-
tia, Cyclica

Chemical structures: 
Acetaminophen de-

rivatives, doxorubicin 
analogues, nitrosourea 
compounds. Toxicity 
Data: Tox21, ToxCast

Predict hepa-
to-toxicity, 

cardiotoxicity, and 
genotoxicity using 

ML models

Detailed 
toxicity 

profiles with 
likelihood of 

adverse effects

Compare 
predictions with 

experimental 
data or known 

outcomes

Hepato-toxicity: Isoniazid. 
Cardio-toxicity: Trastuzum-

ab analogues. Geno-tox-
icity: Cyclophosphamide 

derivatives
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3. Areas for improvement. BenevolentAI exhibit-
ed lower scores in ease of use, interface design, and user 
experience, which may pose challenges for user adoption 
and overall satisfaction. Exscientia’s relatively low scores 
in accuracy and scalability indicate potential limitations 
in contexts that demand high precision and the ability to 
manage large-scale processing tasks efficiently.

4. Specialised usage. Cyclica, while rated as the 
easiest to use, received lower scores in scalability and 
resource utilisation. This suggests that it may be best 
suited for smaller-scale, less resource-intensive drug dis-
covery tasks, where ease of use is prioritised over han-
dling large data volumes or complex computational de-
mands. Following the above, a repeated measures 
ANOVA test was performed to assess the variability in 
performance across different AI-driven no-code applica-
tions while accounting for the correlation between multi-
ple performance metrics measured within each applica-
tion, thus providing a robust comparison of their 
effectiveness in drug discovery tasks.

Repeated measures ANOVA results.
Table 2 presents the results of the repeated mea-

sures ANOVA test. The Repeated measures ANOVA was 
conducted to examine the differences in perceptions 
across the six criteria (Ease of Use, Interface Design, 
User Experience, Speed, Resource Utilization, Accuracy, 
Scalability) for different applications.

Table 2
 Results of repeated measures ANOVA for performance 

metrics across AI-driven applications
Effect SS df MS F p Partial η2

Metrics  
(within-subjects) 19.56 6 3.26 12.33 0.002 0.78

Applications  
(between-subjects) 7.64 5 1.53 3.58 0.048 0.42

Metrics×applications 
(interaction) 5.42 30 0.18 2.07 0.026 0.60

Error 4.56 30 0.15 – – –
Note: SS – sum of squares; df – degrees of freedom; MS – mean 
squares; F – F-ratio.

As can be seen in Table 2, within-subjects ef-
fect (metrics) resulted from the repeated measures ANOVA 
showed a significant main effect of performance metrics, 
F(6.30)=12.33, p=0.002, partial η2=0.78. This indicates that 
there are significant differences among the various perfor-
mance metrics (Ease of Use, Interface Design, etc.) across 
all applications. The high partial η2value suggests that dif-
ferences in these performance metrics explain a large pro-
portion of the variance in the data. Concerning Be-
tween-Subjects Effect (Applications), the ANOVA also 
revealed a significant main effect of applications, 
F(5.30)=3.58, p=0.048, partial η2=0.42. This result implies 
that different AI-driven no-code applications significantly 
differ in their overall performance across the measured 
metrics. A partial η2 of 0.42 indicates a moderate effect size, 
suggesting that the type of application has a moderate im-
pact on performance outcomes. considering the interaction 
effect (metrics x applications), A significant interaction ef-

fect between metrics and applications was found, 
F(30.30)=2.07, p=0.026, partial η2=0.60. This interaction 
suggests that the performance of different applications var-
ies depending on the specific metric being evaluated. For 
instance, an application that performs well in terms of “Ease 
of Use” may not necessarily perform well in “Resource 
Utilization,” indicating that performance is context-specific.  
Overall, the repeated measures ANOVA analysis indicated 
that both the type of application and the specific perfor-
mance metric significantly influence the results. The sig-
nificant interaction effect suggested that some applications 
were better optimised for certain metrics than others, 
highlighting the importance of considering the specific 
use-case scenarios when selecting an AI-driven no-code 
application for drug discovery tasks. Further to the above, 
a Post Hoc Tukey’s Honestly Significant Difference (HSD) 
test was performed to obtain more detailed insights into 
which specific applications and metrics differ significantly 
from each other.

Tukey HSD analysis for AI-driven applications.
The Tukey HSD post hoc test (see test results 

in Table 3) identified specific significant differences be-
tween the AI-driven applications, highlighting the areas 
where each application excels or falls short.

As illustrated in Table 3, the analysis indicates 
that Insilico Pharma.AI significantly outperforms 
Schrödinger LiveDesign, Exscientia, and BenevolentAI 
across various performance metrics, highlighting its 
broad applicability and robust performance in drug dis-
covery tasks. This suggests that Insilico Pharma.AI is 
well-suited for diverse drug development processes, 
potentially offering a competitive advantage in speed, 
interface design, and user experience. Similarly, Atom-
wise demonstrates a significant advantage over Exsci-
entia and BenevolentAI, particularly excelling in met-
rics such as ease of use and scalability. These findings 
underscore Atomwise’s strengths in user accessibility 
and its capacity to effectively handle larger datasets or 
more complex computational tasks.

Schrödinger LiveDesign also shows noteworthy 
improvements over Exscientia and BenevolentAI, espe-
cially in resource utilisation and accuracy. This indicates 
that Schrödinger LiveDesign is a viable option for envi-
ronments where computational efficiency and predictive 
accuracy are critical. However, the lack of significant 
performance differences between Insilico Pharma.AI 
and Atomwise implies that both platforms are equally 
effective, offering robust capabilities across the evaluat-
ed metrics. This parity suggests that the choice between 
these two applications could be guided by specific user 
preferences or particular task requirements rather than 
distinct performance disparities.

Interestingly, the lack of significant differences 
between Atomwise and Cyclica indicates that these 
two applications might serve similar roles in drug dis-
covery despite variations in individual metric scores. 
Cyclica’s high rating in ease of use is contrasted by its 
significant performance gaps in scalability and re-
source utilisation, suggesting that while it may be 
preferred for user-friendly, less resource-intensive 
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tasks, it might struggle with more demanding compu-
tational requirements.

BenevolentAI consistently scores 
lower than the top-performing applica-
tions, particularly when compared to In-
silico Pharma.AI and Atomwise. This 
consistent underperformance points to po-
tential areas for improvement in user ex-
perience and technical functionality. Ad-
dressing these shortcomings could 
enhance BenevolentAI’s competitiveness 
and user satisfaction, thereby broadening 
its applicability in the highly competitive 
field of AI-driven drug discovery. These 
findings collectively emphasise the impor-
tance of evaluating both usability and 
technical performance to determine the 
most appropriate AI-driven solutions for 
specific drug discovery applications.

Expert interview results (see the 
interview questionnaire in Appendix 2).

Table 4 presents the thematic grouping of experts’ 
opinions drawn from the interview.

Table 3
 Tukey HSD Post Hoc test results

Comparison MD SE p Significance
Insilico Pharma.AI vs. Atomwise 0.10 0.15 0.85 Not significant

Insilico Pharma.AI vs. Schrödinger LiveDesign 0.73 0.15 0.02 Significant
Insilico Pharma.AI vs. Exscientia 1.25 0.15 0.001 Significant

Insilico Pharma.AI vs. BenevolentAI 1.56 0.15 0.001 Significant
Insilico Pharma.AI vs. Cyclica 0.18 0.15 0.78 Not significant

Atomwise vs. Schrödinger LiveDesign 0.63 0.15 0.03 Significant
Atomwise vs. Exscientia 1.15 0.15 0.002 Significant

Atomwise vs. BenevolentAI 1.46 0.15 0.001 Significant
Atomwise vs. Cyclica 0.08 0.15 0.89 Not significant

Schrödinger LiveDesign vs. Exscientia 0.52 0.15 0.05 Significant
Schrödinger LiveDesign vs. BenevolentAI 0.83 0.15 0.01 Significant

Schrödinger LiveDesign vs. Cyclica 0.55 0.15 0.04 Significant
Exscientia vs. BenevolentAI 0.31 0.15 0.29 Not significant

Exscientia vs. Cyclica 1.07 0.15 0.005 Significant
BenevolentAI vs. Cyclica 0.76 0.15 0.02 Significant

Table 4
 Thematic grouping of the opinions of experts drawn from the interview

Theme Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Initial 
impressions 
of function-

ality and 
usability

Insilico Pharma.AI 
and Atomwise are 
user-friendly and 

intuitive; Schrödinger 
LiveDesign requires 

a steeper learning 
curve; Exscientia and 
BenevolentAI are less 
intuitive; Cyclica is 
easy to use but lacks 

depth

Impressed by the 
versatility of Insil-
ico Pharma.AI and 

Atomwise, Schröding-
er LiveDesign has 
a comprehensive 

feature set but is less 
user-friendly; Cycli-
ca’s simplicity is ap-
pealing but too basic 

for complex tasks

Insilico Pharma.AI and 
Atomwise are intuitive 

and comprehensive; 
Schrödinger Live-

Design is powerful 
but more suited for 

technical users; Benev-
olentAI and Exscientia 

are less polished in 
usability

Insilico Pharma.AI 
and Atomwise are 
user-friendly and 

have comprehensive 
functionality; Exsci-
entia and Benevo-

lentAI might hinder 
adoption due to their 
less intuitive design

Insilico Pharma.AI 
and Atomwise are 

user-friendly with com-
prehensive function-
ality; Exscientia and 
BenevolentAI might 

hinder adoption due to 
less intuitive design

Reliability 
and accura-
cy in drug 
discovery 

tasks

Insilico Pharma.AI 
and Schrödinger 

LiveDesign provided 
consistent results; 

Atomwise was reliable 
in lead optimisation 
but less consistent in 

virtual screening

Insilico Pharma.AI 
provided reliable pre-
dictions in protein-li-

gand interactions; 
Atomwise was accu-

rate in binding affinity 
predictions; Benevo-
lentAI struggled with 
accuracy in toxicity 

predictions

Insilico Pharma.AI 
is highly reliable for 

predicting drug-target 
interactions; Cyclica’s 
ease of use did not cor-

relate with accuracy

Insilico Pharma.AI is 
reliable in predicting 

molecular interac-
tions; Atomwise is 

reliable, particularly 
in oncology targets

Insilico Pharma.AI pro-
vided highly accurate 
predictions; Atomwise 

was reliable in lead 
optimization; Cyclica’s 
scalability and detailed 

output were less 
reliable

Areas for 
improve-

ment

Resource utilisa-
tion could be more 

efficient; Schrödinger 
LiveDesign could 
benefit from opti-

mised computational 
efficiency; Exscientia 
needs improvement in 

toxicity prediction

Speed is a concern 
with Schrödinger 

LiveDesign; Benevo-
lentAI and Exscientia 
need improvements in 
predictive accuracy; 

Cyclica could enhance 
scalability

Resource utilisation 
needs attention in 

Schrödinger LiveDe-
sign; Exscientia and 
BenevolentAI should 
improve accuracy in 

predictive models

Improve speed of 
complex computa-
tions, especially in 

Schrödinger LiveDe-
sign; Enhance accura-
cy in Benevolent AI’s 

predictive models

Resource utilisation 
needs optimisation in 

Schrödinger Live-
Design; Accuracy of 
toxicity predictions 

in Exscientia and Be-
nevolentAI should be 

improved

Additional 
comments 
and sugges-

tions

Integration with LIMS 
would be beneficial; 

Incorporating custom-
isable reporting tools 

could help

Better training and 
support resources are 
needed, as more guid-
ance for less familiar 
users of AI and ML

Integration with other 
bioinformatics tools 

would enhance utility; 
Seamless integration 
for genetic data analy-
sis is recommended

More robust data 
visualisation capabili-
ties are needed; better 

visualisation helps 
interpret complex 

results

Enhancing collabo-
ration features could 

benefit larger research 
teams and facilitate 

seamless work within 
the same environment
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As can be drawn from Table 4, the experts’ feedback 
suggests that while applications like Insilico Pharma.AI and 
Atomwise are strong performers with user-friendly interfac-
es and reliable predictions, others like Schrödinger LiveDe-
sign, Exscientia, and BenevolentAI need improvements in 
user accessibility, computational efficiency, and accuracy in 
certain areas. Cyclica, though praised for its simplicity, may 
be better suited for less complex tasks. Enhancements in 
integration, visualisation, and support resources are recom-
mended to further advance the utility and adoption of these 
AI-driven no-code applications in drug discovery.

5. Discussion
The findings of this study underscore the varying 

effectiveness and usability of selected AI-driven no-
code applications in drug discovery, providing valuable 
insights into their current capabilities and potential ar-
eas for improvement. The analysis revealed that Insilico 
Medicine’s Pharma.AI and Atomwise generally outper-
formed the other applications across multiple metrics, 
including usability, reliability, and accuracy, suggesting 
their broad applicability in various stages of drug dis-
covery. Schrödinger’s LiveDesign, while resource-in-
tensive, demonstrated a high level of accuracy, making 
it suitable for environments where precision is critical. 
In contrast, BenevolentAI and Exscientia showed lim-
itations in both usability and predictive accuracy, indi-
cating a need for further development to enhance their 
practical utility. Cyclica, noted for its user-friendliness, 
appears more suited for simpler tasks due to its lower 
scalability and resource utilisation capabilities.

The study’s findings align with existing literature 
that highlights the potential of AI-driven platforms to rev-
olutionise drug discovery processes. Previous research has 
shown that AI can significantly improve the efficiency and 
accuracy of target identification and virtual screen-
ing [10, 11]. The strong performance of Insilico Pharma.AI 
and Atomwise in these areas corroborates these findings, 
demonstrating their capacity to provide reliable predic-
tions that align with experimental data [30]. These applica-
tions leverage advanced machine learning models, such as 
deep learning and support vector machines, to analyse 
vast datasets and predict drug-target interactions accurate-
ly [10, 16]. However, the observed limitations of Benevo-
lentAI and Exscientia in predictive accuracy, particularly 
in toxicity predictions, highlight ongoing challenges in the 
field. As noted by [14], the accuracy of AI predictions is 
heavily dependent on the quality and diversity of the train-
ing data. The inconsistent performance of these applica-
tions suggests that they may benefit from incorporating 
more comprehensive datasets and advanced modelling 
techniques to improve their predictive power. Moreover, 
the high resource demands of Schrödinger LiveDesign 
echo concerns raised by [18] regarding the scalability of AI 
applications in drug discovery, which can hinder their 
broader adoption in resource-constrained environments.

Practical relevance. The practical relevance of 
these findings lies in their potential to guide pharmaceuti-
cal companies and research institutions in selecting the 

most suitable AI-driven no-code applications for their 
drug discovery projects. By identifying the strengths and 
weaknesses of each application, stakeholders can make 
informed decisions about which tools to integrate into their 
workflows, thereby optimising efficiency and resource 
allocation. Applications like Insilico Pharma.AI and 
Atomwise, with their demonstrated reliability and usability, 
can serve as valuable assets in accelerating the drug dis-
covery process, reducing time-to-market for new thera-
peutic drugs, and ultimately improving patient outcomes.

Research limitations. The evaluation’s scope was 
limited to a few applications and scenarios, which may not 
accurately represent the full potential of AI-driven no-code 
applications in drug discovery. The reliance on expert inter-
views introduces subjective bias, and the tested scenarios 
may not capture the complexities of real-world drug discov-
ery projects, thereby limiting the results’ generalisability.

Prospects for further research. Future research 
should aim to expand the scope of evaluation by including a 
broader range of AI-driven applications and testing them in 
more diverse and complex drug discovery scenarios. Inves-
tigating the integration of these applications with other ad-
vanced technologies, such as quantum computing and big 
data analytics, could provide deeper insights into their po-
tential and limitations. Longitudinal studies assessing the 
long-term impact of these tools on drug discovery timelines, 
costs, and success rates would also be valuable. Further-
more, exploring user-centred design improvements based 
on feedback from a wider range of stakeholders, including 
scientists, clinicians, and data analysts, could enhance the 
usability and adoption of these tools.

6. Conclusion
The results indicated that Insilico Medicine’s Phar-

ma.AI and Atomwise are robust performers across various 
metrics, demonstrating strong usability and reliable pre-
dictive accuracy in tasks such as target identification and 
lead optimisation. Schrödinger’s LiveDesign, while accu-
rate, requires significant computational resources, which 
may limit its applicability in resource-constrained envi-
ronments. In contrast, BenevolentAI and Exscientia were 
found to have limitations in both usability and predictive 
accuracy, particularly in toxicity prediction, highlighting 
areas for future improvement. Cyclica, noted for its ease of 
use, appears best suited for simpler, less resource-intensive 
tasks due to its lower scalability and resource efficiency.

These findings underscore the importance of se-
lecting the right AI-driven tools tailored to specific drug 
discovery tasks and organisational needs. As AI contin-
ues to advance, integrating these applications with exist-
ing bioinformatics tools and enhancing their capabilities 
through better data quality, efficient resource utilisation, 
and user-centred design will be crucial for maximising 
their potential. Addressing these challenges will not only 
improve the functionality of these tools but also acceler-
ate the drug discovery process, reduce costs, and en-
hance the overall success rate of developing new thera-
peutic drugs. Future research should focus on expanding 
the scope of evaluation to include a wider range of appli-
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cations, scenarios, and real-world case studies, as well as 
exploring innovative ways to improve the accuracy, scal-
ability, and usability of these tools. 
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Appendix 1 

Researcher Designed Scenarios for Five Standardised Tests to Evaluate AI-

Driven No-Code Applications in Drug Discovery 

 

Scenario 1: Target Identification 

(Used to test the functionality of apps such as Insilico Medicine’s Pharma.AI, 

Exscientia & BenevolentAI) 

Objective: Evaluate the application’s ability to identify potential drug targets 

based on disease-related proteins. 

Description: 

Disease Selection: 

• Alzheimer's Disease: A neurodegenerative disorder characterised by the 

accumulation of amyloid-beta plaques and tau tangles in the brain. 

• Breast Cancer: A common cancer type where mutations in certain genes, such 

as BRCA1 and HER2, play a critical role in the disease’s progression. 

 

Dataset Preparation: 

Genomic and Proteomic Data: 

For Alzheimer’s Disease: 

• Genomic Data: Whole-genome sequencing data from Alzheimer’s patients, 

including known mutations in genes such as APP, PSEN1, and APOE. 

• Proteomic Data: Protein expression profiles from Alzheimer’s brain tissues, 

focusing on proteins like amyloid-beta (Aβ) and tau. 

For Breast Cancer: 

• Genomic Data: Whole-exome sequencing data from breast cancer patients, 

including mutations in BRCA1, BRCA2, and TP53. 

• Proteomic Data: Protein expression profiles from tumor samples, with an 

emphasis on proteins like HER2 (ERBB2) and estrogen receptor (ER). 

Task: 



The application is to be tasked with analysing these genomic and proteomic 

datasets to identify novel drug targets: 

• For Alzheimer’s Disease: The application might be supposed to identify proteins 

involved in the amyloid-beta pathway or tau phosphorylation as potential drug targets. 

• For Breast Cancer: The application could be expected to pinpoint mutations in 

PIK3CA or overexpression of HER2 as potential targets for therapeutic intervention. 

Validation: 

• Known Targets: The application’s identified targets is to be compared against 

known targets, such as those listed in databases like DrugBank, OMIM, or the 

Therapeutic Target Database (TTD). 

• Novel Targets: For novel targets, additional validation is to be performed using 

literature searches and experimental data to determine their relevance and potential for 

drug development. 

Evaluation Metrics: 

Accuracy: The proportion of correctly identified targets relative to known targets.  

Novelty: The application’s ability to identify previously unknown targets.  

Speed: The time taken to process the datasets and generate results. 

 

Scenario 2: Virtual Screening 

(Used to test the functionality of apps such as Insilico Medicine’s Pharma.AI 

& Atomwise) 

Objective: Assess the application’s capability to screen large chemical libraries 

for compounds with potential binding affinity to a target protein. 

Description: 

Target Protein Selection: 

• EGFR (Epidermal Growth Factor Receptor): A well-known target in non-small 

cell lung cancer (NSCLC). Mutations in EGFR can lead to uncontrolled cell 

proliferation, making it a prime target for cancer therapies. 

• BACE1 (Beta-Secretase 1): A target for Alzheimer’s disease, involved in the 

production of amyloid-beta peptides, which aggregate to form plaques in the brain. 



• SARS-CoV-2 Main Protease (Mpro): A critical enzyme in the life cycle of the 

SARS-CoV-2 virus, making it a target for COVID-19 antiviral drug development. 

Chemical Library Selection: 

• ZINC15 Database: A publicly available chemical library containing over 230 

million purchasable compounds. For this scenario, a subset of 1,000,000 diverse 

compounds will be used for screening. 

• ChEMBL: A database of bioactive drug-like small molecules with over 2 million 

compounds, widely used in drug discovery research. 

• Enamine REAL Database: A chemical library containing over 3 billion 

synthetically accessible compounds, suitable for large-scale virtual screening projects. 

Task: 

• The application is to be tasked with virtually screening a library of 1,000,000 

chemical compounds against a specific target protein. 

• The virtual screening process involves docking the compounds into the binding 

site of the target protein and predicting their binding affinities. 

• The output will be a ranked list of compounds, with those predicted to have the 

highest binding affinity at the top. 

Validation: 

• The top-ranked compounds are to be cross-referenced with known inhibitors or 

binders of the target protein from databases such as DrugBank, PubChem, and 

BindingDB. 

• Experimentally validated binding affinities are to be compared to the predicted 

affinities to assess the accuracy of the virtual screening. 

Evaluation Metrics: 

Accuracy: The percentage of top-ranked compounds that exhibit experimentally 

validated binding affinity. 

Efficiency: The computational resources and time required to complete the virtual 

screening. 

Scalability: The application’s ability to handle larger libraries without significant 

performance degradation.  



Appendix 2 

Expert Interview Questionnaire 

 

1. What were your initial impressions of the overall functionality and usability of 

each AI-driven no-code application you tested? 

2. Do you believe that the applications tested are capable of offering reliable and 

accurate results for drug discovery professionals? Please provide specific examples or 

scenarios to support your reasoning. 

3. What are the main areas where these applications could be improved to better 

support drug discovery efforts, particularly in terms of performance metrics like speed, 

accuracy, and resource utilisation? 

4. Do you have any additional comments or suggestions regarding the use and 

potential integration of AI-driven no-code applications in drug discovery that were not 

covered in the previous questions? 

 

Scenario 3: Drug Design 

(Used to test the functionality of apps such as Insilico Medicine’s Pharma.AI, 

Atomwise, Schrödinger’s LiveDesign, Exscientia, BenevolentAI, Cyclica) 

Objective: Evaluate the application’s effectiveness in designing new drug 

molecules optimised for specific properties such as binding affinity, solubility, 

bioavailability, and selectivity. 

Description: 

Target Protein Selection: 

• HIV-1 Protease: A crucial enzyme in the life cycle of the HIV virus, making it 

a prime target for antiretroviral drugs. 

• PD-L1 (Programmed Death-Ligand 1): A target in immuno-oncology therapies, 

where inhibiting the PD-1/PD-L1 interaction can enhance the immune response against 

tumors. 

• ACE2 (Angiotensin-Converting Enzyme 2): A receptor for SARS-CoV-2, 

making it a target for designing antiviral drugs against COVID-19. 



Design Objectives: 

• Binding Affinity: The application should design molecules with strong binding 

affinity to the selected target protein. 

• Solubility: The designed molecules should have high solubility in aqueous 

environments to ensure adequate bioavailability. 

• Bioavailability: The molecules should be optimised for oral bioavailability, 

considering factors such as molecular weight, lipophilicity, and hydrogen bonding 

potential. 

• Selectivity: The application should design molecules that are selective for the 

target protein, minimising off-target interactions that could lead to side effects. 

Assessment Criteria: 

Lipinski’s Rule of Five: The designed molecules are to be assessed for drug-

likeness based on Lipinski’s Rule of Five, which includes criteria like: 

• No more than 5 hydrogen bond donors (OH and NH groups). 

• No more than 10 hydrogen bond acceptors (N and O atoms). 

• A molecular weight under 500 Da. 

• A partition coefficient (LogP) less than 5. 

Additional Optimisation Goals: 

Pharmacokinetics: The application should also consider pharmacokinetic 

properties such as half-life and metabolism. 

Toxicity: The molecules should be designed to avoid known toxicophores and 

minimise predicted toxicity. 

Evaluation Metrics: 

Design Quality: 

Definition: The degree to which the designed molecules meet the desired 

properties (binding affinity, solubility, bioavailability, selectivity). 

Creativity: 

Definition: The novelty of the molecular structures proposed by the application. 

Optimisation Efficiency: 



Definition: The time and computational resources required to generate optimised 

drug candidates. 

 

Scenario 4: Lead Optimisation 

(Used to test the functionality of apps such as Insilico Medicine’s Pharma.AI, 

Atomwise, Schrödinger’s LiveDesign, Exscientia, BenevolentAI, Cyclica) 

Objective: Test the application’s ability to refine lead compounds to enhance their 

efficacy, selectivity, and safety. 

Description: 

Selection of Target Protein and Lead Compounds: 

Target Protein: VEGFR-2 (Vascular Endothelial Growth Factor Receptor-2) 

Involved in angiogenesis, making it a target for cancer therapies, particularly in 

inhibiting tumor blood supply. 

Lead Compound Example: Sunitinib 

A multi-targeted receptor tyrosine kinase (RTK) inhibitor that has moderate 

activity against VEGFR-2 but requires optimisation to improve selectivity and reduce 

cardiotoxicity. 

Target Protein: BACE1 (Beta-Secretase 1) 

Involved in the production of amyloid-beta, making it a target for Alzheimer’s 

disease. 

Lead Compound Example: LY2886721 

A BACE1 inhibitor that showed promise in early trials but was discontinued due 

to liver toxicity. 

Target Protein: MMP-9 (Matrix Metalloproteinase-9) 

Involved in tissue remodeling and implicated in cancer metastasis and chronic 

inflammatory diseases. 

Lead Compound Example: Marimastat 

A broad-spectrum MMP inhibitor that was discontinued due to musculoskeletal 

toxicity, requiring selective optimisation. 

Optimisation Objectives: 



Potency Improvement: 

Increase the binding affinity of the lead compounds to their respective target 

proteins. For example, optimising Sunitinib to achieve stronger inhibition of VEGFR-2. 

Selectivity Enhancement: 

Reduce off-target interactions that could lead to side effects. For instance, 

modifying the structure of LY2886721 to reduce its interaction with liver enzymes, 

thus lowering hepatotoxicity. 

Safety Improvement: 

Optimise pharmacokinetic properties, including absorption, distribution, 

metabolism, and excretion (ADME), to enhance the safety profile. For Marimastat, 

structural changes could be explored to reduce its impact on musculoskeletal tissues. 

Lead Compound Optimisation Process: 

Structure-Based Drug Design: 

The application will use the 3D structures of the lead compounds bound to their 

target proteins to identify regions of the molecule that can be modified to improve 

binding affinity and selectivity. 

Computational Screening: 

The application will generate and virtually screen multiple analogues of the lead 

compound, predicting their binding affinities, selectivity profiles, and ADME 

characteristics. 

Iterative Optimisation: 

The application will iteratively refine the lead compounds, using feedback from 

each round of screening to enhance efficacy and reduce potential toxicity. 

Evaluation Metrics: 

Improvement in Potency: 

Definition: The increase in binding affinity or activity compared to the original 

lead compounds. 

Selectivity: 

Definition: The ability to reduce off-target interactions while maintaining or 

improving efficacy. 



Safety Profiles: 

Definition: Predicted improvements in pharmacokinetic properties and reduced 

toxicity. 

 

Scenario 5: Toxicity Prediction 

(Used to test the functionality of apps such as Insilico Medicine’s Pharma.AI, 

Schrödinger’s LiveDesign, Exscientia, Cyclica) 

Objective: Assess the application’s capability to predict potential toxic effects of 

drug candidates, focusing on common toxicity endpoints such as hepatotoxicity, 

cardiotoxicity, and genotoxicity. 

Description: 

Selection of Drug Candidates: 

Candidate 1: Acetaminophen (Paracetamol) Derivatives 

Potential Toxicity: Hepatotoxicity 

Background: Acetaminophen is widely used as an analgesic and antipyretic, but 

overdoses can cause severe liver damage. The application will be tasked with 

predicting hepatotoxicity in novel acetaminophen derivatives. 

Candidate 2: Doxorubicin Analogues 

Potential Toxicity: Cardiotoxicity 

Background: Doxorubicin, an anthracycline antibiotic used in chemotherapy, is 

known for its effectiveness but also for its dose-dependent cardiotoxicity. The 

application will predict cardiotoxic effects in new analogues. 

Candidate 3: Nitrosourea-Based Compounds 

Potential Toxicity: Genotoxicity 

Background: Nitrosoureas are alkylating agents used in cancer treatment, but they 

can cause DNA damage leading to mutagenesis and genotoxicity. The application will 

assess the genotoxic potential of new nitrosourea derivatives. 

Toxicity Endpoints: 

• Hepatotoxicity: Predict the likelihood of liver enzyme elevation (e.g., ALT, AST) 

and liver damage, which could lead to conditions like drug-induced liver injury (DILI). 



• Cardiotoxicity: Predict the potential for QT interval prolongation, 

cardiomyopathy, or arrhythmias, which could lead to heart failure or sudden cardiac 

death. 

• Genotoxicity: Predict the potential for DNA damage, mutagenesis, and 

chromosomal aberrations, which could result in carcinogenicity or teratogenic effects. 

Toxicity Prediction Process: 

Data Input: 

The application is to be provided with the chemical structures and relevant 

physicochemical properties of the drug candidates. 

Prediction Models: 

The application will use in silico models to predict toxicological endpoints based 

on known toxicity data, structure-activity relationships (SAR), and machine learning 

algorithms trained on large toxicity datasets (e.g., Tox21, ToxCast). 

Output: 

The application will generate a toxicity profile for each drug candidate, indicating 

the likelihood of various toxic effects, such as hepatotoxicity, cardiotoxicity, and 

genotoxicity. 

Evaluation Metrics: 

Accuracy: 

Definition: The percentage of correctly predicted toxic and non-toxic compounds 

compared to experimental data. 

Definition: 

Sensitivity: The ability to correctly identify compounds that are toxic. 

Specificity: The ability to correctly identify compounds that are non-toxic. 

Predictive Power: 

Definition: The application’s ability to predict specific types of toxicity with high 

confidence. 


