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Abstract

In this paper we have theoretically predicted a novel pathway for the mutagenic tautomeriza-

tion of the classical A�T DNA base pairs in the free state, the Watson-Crick A�T(WC), reverse

Watson-Crick A�T(rWC), Hoogsteen A�T(H) and reverse Hoogsteen A�T(rH) pairs, via

sequential proton transfer accompanied by a significant change in the mutual orientation of

the bases. Quantum-mechanical (QM) calculations were performed at the MP2/aug-cc-

pVDZ//B3LYP/6-311++G(d,p) level in vacuum phase, along with Bader’s quantum theory

of Atoms in Molecules (QTAIM). These processes involve transition states (TSs) with

quasi-orthogonal structures (symmetry C1), which are highly polar, tight ion pairs (A-, N6H2-

deprotonated)�(T+, O4/O2-protonated). Gibbs free energies of activation for the A�T(WC) /

A�T(rWC)$ A*�T(rwWC) / A*�T(wWC) tautomeric transitions (~43.5 kcal�mol-1) are lower

than for the A�T(H) / A�T(rH)$ A*N7�T(rwH) / A*N7�T(wH) tautomerisations (~53.0 kcal�mol-1)

(rare tautomers are marked by an asterisk; w—wobble configured tautomerisation products).

The (T)N3+H� � �N1-(A), (T)O4+H� � �N1-(A) / (T)N3+H� � �N1-(A) and (T)O2+H� � �N1-(A) H-

bonds are found in the transition states TSA-�T+
A�T(WC)$A*�T(rwWC) / TSA-�T+

A�T(rWC)$A*�T(wWC).

However, in the transition state TSA-�T+
A�T(H)$A*N7�T(rwH) / TSA-�T+

A�T(rH)$A*N7�T(wH), the (T)

N3+H� � �N7-(A), (T)O4+H� � �N7-(A) / (T)N3+H� � �N7-(A) and (T)O2+H� � �N7-(A) H-bonds are

supplemented by the attractive (T)O4+/O2+� � �N6-(A) van der Waals contacts. It was demon-

strated that the products of the tautomerization of the classical A�T DNA base pairs—A*�T
(rwWC), A*N7�T(rwH) and A*N7�T(wH) (symmetry Cs)–further transform via double proton

transfer into the energetically favorable wobble A�T*(rwWC), A�T*(rwH) and A�T*O2(wH) base

mispairs (symmetry Cs).
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Introduction

Investigation of microstructural mechanisms for mutagenic tautomerization of the Watson-

Crick DNA base pairs occupies an important place in molecular biophysics and molecular

biology, enabling an understanding of the nature of genome instability [1–5]. This follows

from the ‘rare tautomer hypothesis’ proposed by Watson and Crick [1] shortly after

they established the spatial architecture of DNA [2]. However, achievements in this area

remain rather modest despite its long history [6], encouraging further research in this

direction.

Löwdin [3, 4] first proposed that the electronic structure of the Watson-Crick (WC) DNA

base pairs A�T(WC) and G�C(WC) permits their transition into the high-energy tautomerized

states A��T�(L) and G��C�(L), now called Löwdin (L) base pairs. Here and henceforth, rare (in

particular mutagenic) tautomers are marked with an asterisk and differ from each other by the

location of a particular proton: in the A� rare tautomer proton bonds to N1 nitrogen atom,

A�N7 –to N7 nitrogen atom; T�–to O4 oxygen atom and T�O2 –to O2 oxygen atom. Löwdin

proposed that the A�T(WC)$A��T�(L) and G�C(WC)$G��C�(L) transitions occur by double

proton transfer (DPT) along neighboring intermolecular hydrogen (H) bonds via proton

tunneling. These ideas have been prominent in the field of quantum biology and attracted

much theoretical study of the mechanisms of spontaneous transitions and transversions aris-

ing during DNA replication [7–14].

Recently, it has become clear that Löwdin’s mechanism does not provide the generation of

sufficiently long-lived mutagenic tautomers of the DNA bases, which escape from the replica-

tive DNA-polymerase transforming into their canonical tautomeric forms. The root cause of

this observation is the absence of the reverse barrier of tautomerization ΔΔG in the A�T(WC)

DNA base pair and its small value in comparison with kT (0.62 kcal�mol-1 under normal con-

ditions) for the G�C(WC) DNA base pair [8, 9, 15–18].

In previous papers [19–27] we proposed an alternative mechanism for mutagenic tauto-

merization of the A�T(WC) and G�C(WC) base pairs into the corresponding wobble base mis-

pairs and vice versa, which mechanism obviates the above difficulties. The chief difference of

our mechanism from the Löwdin mechanism is that, in the process of mutagenic tautomeriza-

tion through sequential proton transfer, the DNA bases shift laterally relative each other into

the DNA minor or major grooves, leading to the wobble configuration which contains the

mutagenic tautomers [19]. Moreover, it turned out that a similar mechanism works also for

the mutagenic tautomerization of purine-purine [21], pyrimidine-pyrimidine [22, 23] and

purine-pyrimidine [24–27] DNA base mispairs, which are active players in the field of sponta-

neous point mutagenesis.

This allows us to assume that it is the intrapair tautomeric transition of the wobble pairs

from the main tautomeric form into the rare one with a WC configuration or close to it, and

vice versa, which is the key to understanding the microstructural mechanisms for spontaneous

transitions and transversions during DNA biosynthesis [19–27]. Theoretical analyses of such

mechanisms have been experimentally confirmed in part for the A�C(w) and G�T(w) purine-

pyrimidine pairs [28–31].

This paper uses QM/QTAIM methods to explore new pathways for mutagenic tautomeriza-

tion of the classical Watson-Crick A�T(WC), reverse Watson-Crick A�T(rWC), Hoogsteen

A�T(H) and reverse Hoogsteen A�T(rH) base pairs with a remarkable biological meaning (for

more details, see Refs. [32–49]). These are controlled by transition states with a quasi-orthogo-

nal structure (symmetry C1) which are highly polar tight ion pairs (A-, N6H2–deprotonated)�

(T+, O4/O2-deprotonated).
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Computational methods

The geometries of all the investigated DNA base pairs and transition states (TSs) were opti-

mized using the Gaussian’09 package [50]. The B3LYP/6-311++G(d,p) level of theory [51–55]

was used. This level of theory has successfully proved itself for calculations of similar systems

[56–63]. The study included harmonic frequency calculations (using a scaling factor of 0.9668

[64–66]) and intrinsic reaction coordinate (IRC) analysis in the forward and reverse directions

from each TS using a Hessian-based predictor-corrector integration algorithm [67] at the

B3LYP/6-311++G(d,p) level of theory successfully applied in the previous studies [16, 17, 68,

69]. Local minima and TSs (localized by the synchronous transit-guided quasi-Newton

method [70]) were confirmed as such by the absence or presence, respectively, of one imagi-

nary frequency. Standard TS theory was applied to estimate the activation barriers for the tau-

tomerisation reactions [71]. Single point electronic energy calculations were performed for the

B3LYP geometries at the MP2/aug-cc-pVDZ level of theory [72, 73]. MP2 has been success-

fully applied to gain chemical information about similar proton transfer reactions in DNA

systems [74–79]. The choice of the MP2 level of theory is caused by the insignificant errors in

comparison with CCSD(T) method, that was convincingly shown in the benchmark works of

Hobza and Šponer [80, 81].

We have performed investigations for the isolated H-bonded pairs of nucleotide bases, that

adequately reflects the processes occurring in real duplex environment [14, 30, 31]. At this we

relied on experience received in the previous works [82–85] devoted to related topics and sys-

tems, where the negligibly small impact of the stacking and sugar-phosphate backbone on the

tautomerisation processes has been shown.

The Gibbs free energy G for all structures was obtained in the following way:

G ¼ Eelþ Ecorr ð1Þ

where Eel = electronic energy, while Ecorr = thermal correction to Gibbs free energy.

Electronic interaction energies ΔEint were calculated at the MP2/6-311++G(2df,pd) level of

theory as the difference between the total energy of the base pair and energies of the monomers

and corrected for the basis set superposition error (BSSE) [86,87] through the counterpoise

procedure [88,89] without consideration of the deformation energies of the monomers due to

their relatively small values [90].

Bader’s quantum theory of Atoms in Molecules (QTAIM) [91–96] was applied to analyse

the electron density distribution, using the AIMAll package [97] for the wave functions

obtained at the B3LYP/6-311++G(d,p) level of theory. Presence of a bond critical point (BCP),

namely, the so-called (3,-1) BCP, and a bond path between non-covalently connected atoms,

as well as a positive value of the Laplacian at this BCP (Δρ>0), were considered as criteria for

formation of an H-bond or attractive van der Waals contact [98–100].

The energies of the attractive van der Waals contacts [101, 102] in TSs for tautomeric tran-

sitions of the base pairs were calculated by the empirical Espinosa-Molins-Lecomte (EML) for-

mula [103, 104] based on the electron density distribution at the (3,-1) BCPs of the specific

contacts:

E ¼ 0:5VðrÞ ð2Þ

where V(r) = value of a local potential energy at the (3,-1) BCP.

Energies of conventional AH���B H-bonds were evaluated by the empirical Iogansen for-

mula [105]:

EAH���B ¼ 0:33 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn � 40
p

; ð3Þ
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where Δν = magnitude of the stretching frequency shift for the AH H-bonded group involved

in the AH���B H-bond relative to the unbound group. Partial deuteration was applied in order

to avoid the effect of vibrational resonances [106–114].

The atom numbering scheme for the DNA bases is as per convention [108].

Results and discussion

These novel pathways for the mutagenic tautomerization of four biologically important A�T

DNA base pairs—Watson-Crick A�T(WC), reverse Watson-Crick A�T(rWC), Hoogsteen A�T

(H) and reverse Hoogsteen A�T(rH) [32–49]–are portrayed in Figs 1 and 2, with data entered

into Tables 1–3.

Conformers of the A�T base pairs remain plane symmetric structures along the entire IRC

of tautomerization. This also holds for base pairs tautomerising via proton transfer along inter-

molecular H-bonds as per currently known mechanisms for mutagenic tautomerization of

WC pairs [16, 17, 19, 49].

The A�T(WC) / A�T(rWC) / A�T(H) / A�T(rH)$ A��T(rwWC) / A��T(wWC) / A�N7�T(rwH)

/ A�N7�T(wH) tautomerisation reactions occur via the initial migration of proton localized at

the N6 atom of the N6H2 amino group, leading to the formation of the A+�T- ion pair and sig-

nificant change of the mutual orientation of the bases within the pair, i.e. mutual transforma-

tion of the cys / trans$trans / cys-orientation of the N1H and N9H bonds relative to each

other (Fig 1). Our new mechanism is controlled by the TSs having quasi-orthogonal structures

(symmetry C1). Further proton transfers to the N1/N7 nitrogen atom causing the rotation of

the base and formation of the terminal wobble base mispair. Each of these tautomeric conver-

sions is followed by the asynchronous DPT along the intermolecular H-bonds in the wobble

base mispairs (Fig 2).

In all four cases of the novel A�T(WC) / A�T(rWC) / A�T(H) / A�T(rH)$ A��T(rwWC) /

A��T(wWC) / A�N7�T(rwH) / A�N7�T(wH) tautomerisation reactions, the TSs are highly polar

(~ 6.8–12.7 D) tight ion pairs (energy of interaction between bases in the pairs ~117–142

kcal�mol-1) (Table 2). These TSs are (A-, N6H2-deprotonated)�(T+, O4/O2-protonated) ion

pairs. In the TSA-�T+
A�T(WC)$A��T(rwWC) / TSA-�T+

A�T(rWC)$A��T(wWC) transition states of tauto-

merisation the (T)N3+H� � �N1-(A) (13.06 / 13.24) and (T)O4+ / O2+H� � �N1-(A) (8.85 / 8.82

kcal�mol-1) are observed, while for the TSA-�T+
A�T(H)$A�N7�T(rwH) / TSA-�T+

A�T(rH)$A�N7�T(wH)

transition states, the (T)N3+H� � �N7-(A) (8.98 / 8.46) and (T)O4+ / O2+H� � �N7-(A) (5.18 /

4.38) H-bonds are supplemented by attractive (T)O4+/O2+� � �N6-(A) (2.58 / 3.71 kcal�mol-1)

van der Waals contacts (Fig 1, Table 2). At this, the (T)N3+H� � �N1-/N7-(A) H-bonds (~ 8.5–

13.0 kcal�mol-1) are significantly stronger than other specific contacts with increased ellipticity.

The weakest among them are the attractive (T)O4+/O2+� � �N6-(A) (2.58 / 3.71 kcal�mol-1) van

der Waals contacts (Table 2).

All TSA��T(rwWC)$A�T�(rwWC), TSA��T(wWC)$A�T�O2(wWC), TSA�N7�T(rwH)$A�T�(rwH) and

TSA�N7�T(wH)$A�T�O2(wH) of the DPT reactions are stabilized by the N6-H-N3 covalent bridge

and one-single intermolecular H-bond—N1H� � �O4 (11.61), N1H� � �O2 (10.94), N7H� � �O4

(13.76) and N7H� � �O4 (12.95 kcal�mol-1), accordingly (Fig 2, Table 2).

The non-canonical CH� � �O H-bonds [110, 111] have been registered in the initial com-

plexes of the tautomerisation: A�T(WC)–C2H� � �O2 (0.74), A��T�(L)–C2H� � �O2 (0.57), A�T

(rWC)–C2H� � �O4 (0.77), A�T(H)–C8H� � �O2 (0.83), A�T(rH)–C8H� � �O4 (0.86 kcal�mol-1),

which are characterized by low energies ECH���O, estimated by the Espinose-Molins-Lecomte

formula [103, 104], decreased electron-topological parameters (ρ, Δρ, 100�ε) and angles

(∠AH� � �B), but increased intermolecular distances (dC� � �O and dH� � �O) in comparison with

the canonical H-bonds (for more details see Table 2).
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Fig 1. Geometrical structures of the stationary points on the discovered pathways of the tautomerizations via the

sequential proton transfer in the four biologically important A�T DNA base pairs through the TSs with quasi-

orthogonal oriented bases. Electronic ΔEint (contribution of the total energy of the intermolecular specific contacts) and

Gibbs free ΔGint energies of the interaction (MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, in kcal�mol-1),

relative Gibbs free energies ΔG and electronic energies ΔE (in kcal�mol-1), imaginary frequencies νi at the TSs of the

Novel pathway of the mutagenic tautomerization of the classical A�T DNA base pairs

PLOS ONE | https://doi.org/10.1371/journal.pone.0199044 June 27, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0199044


In general, the values of the electron density ρ at the (3,-1) BCPs of the intermolecular H-

bonds range from 0.013 a.u. up to the 0.107 a.u.; the values of the Laplacian of the electron den-

sity Δρ at the (3,-1) BCPs are positive for all intrapair H-bonds and lie within a wide range

from 0.005 a.u. up to the 0.152 a.u., demonstrating that H-bonds are attractive closed-shell

ineractions; the value of the ellipticity ε varies in the range 0.79–8.6�10−3 (Table 2).

The classical geometrical criteria are satisfied for all canonical H-bonds in the investigated

base mispairs and TSs of their interconversions: dA���B (2.574–3.103 Å), dH���B (1.442–2.293 Å)

and∠AH� � �B (139.2–179.3˚) (Table 2).

Interestingly, the energy of the intermolecular specific contacts (H-bonds and attractive

van der Waals contacts) constitute only a minor part of the electronic energy of monomeric

interactions for all these H-bonded structures (~14–0.87%) (see Figs 1 and 2). This agrees with

previous results for other H-bonded base pairs [112].

All tautomeric transitions in this work are dipole-active, being accompanied by significant

changes in dipole moment of the tautomerizing structures along the IRC (0.38–12.65 D),

achieving maximum values for each tautomeric transition at its TS (7.38, 6.83, 12.65 and

10.636 D, accordingly) (Table 2). The Gibbs free energy of activation for the A�T(WC)/A�T

(rWC)$A��T(rwWC)/A��T(wWC) tautomerisations (~ 43.5 kcal�mol-1) is noticeably lower

than for the A�T(H)/A�T(rH)$A�T�(rwH)/A�T�O2(wH) tautomerisations (~ 53.0 kcal�mol-1)

(Figs 1 and 2).

Note that only one case of mutagenic tautomerization, the A�T(WC)$A��T(rwWC) reac-

tion, occurs by participation of the dynamically unstable intermediate A��T�(L) (a Löwdin’s

base pair [3, 4]). The other three A�T DNA base pairs—A�T(rWC), A�T(H) and A�T(rH)–do

not tautomerise via the Löwdin’s mechanism. For these three pairs, the local minima corre-

sponding to the tautomerized A��T�O2, A�N7�T
� and A�N7�T

�
O2 base pairs are absent on the

energy hypersurface. This observation is independent of the level of QM theory used.

It should be noted that three out of four tautomerization processes of the A�T base pairs do

not complete with formation of the A��T(rwWC), A�N7�T(rwH) and A�N7�T(wH) mispairs (Fig 2

and Table 1). These plane-symmetric wobble pairs (symmetry Cs) tautomerise further via the

DPT mechanism along neighboring intermolecular H-bonds into the energetically-favorable

plane-symmetric A�T�(rwWC), A�T�(rwH) and A�T�O2(wH) DNA base mispairs, respectively (Fig

2, Tables 1 and 2). These processes occur via a concerted asynchronous mechanism with proton

transfer along the intermolecular (T)N3H� � �N6(A) H-bonds, which, in fact, is a rate-limiting

stage. It is noteworthy that the A�N7�T(rwH)!A�T�(rwH) and A�N7�T(wH)!A�T�O2(wH) tauto-

merisations are barrier-less (ΔΔGTS = -1.98 and -1.97 kcal�mol-1) (Table 1), while the activation

barriers for the A��T(rwWC)$A�T�(rwWC) (1.39) and A��T(wWC)$A�T�O2(wWC) (1.77) are sig-

nificantly lower than for the novel tautomerisation reactions (41.40–53.56 kcal�mol-1), but are

comparable with the values for the other DPT reactions [113]: from 2.42 for A��G�syn$A�G�syn

[100] to 10.29 kcal�mol-1 for A�T$A��T� [16] DPT tautomerisations.

It is thus possible to say that the tautomerization processes described here terminate with

the mutagenic tautomerization of both T and A DNA bases with further formation of the clas-

sical mutagenic tautomers T�, T�O2 [16, 19, 27, 64, 102, 106] and A� [16, 19–22, 25, 26, 100,

114], respectively. In this case, the A�N7�T(rwH)$A�T�(rwH) and A�N7�T(wH)$A�T�O2(wH)

tautomeric equilibria are completely shifted to the right. For the two other cases, the following

conformational transitions (MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory in the continuum with ε = 1 at

T = 298.15 K) are presented below complexes in brackets. Dotted lines indicate AH���B H-bonds and attractive A���B van

der Waals contacts—their lengths H���B and A���B are presented in angstroms (for their more detailed physico-chemical

characteristics see Table 2); carbon atoms are in light-blue, nitrogen—in dark-blue, hydrogen—in grey and oxygen—in red.

https://doi.org/10.1371/journal.pone.0199044.g001
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Fig 2. Geometrical structures of the stationary points on the pathways of the tautomerizations via the double proton transfer

in the products of the discovered tautomerizations of the classical A�T DNA base pairs. For the detailed designations see Fig 1.

https://doi.org/10.1371/journal.pone.0199044.g002
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proportions are observed: A��T(rwWC) (6.9%)$ A�T�(rwWC) (93.1%) and A��T(wWC)

(83.6%)$ A�T�O2(wWC) (16.4%).

Gibbs free energies (in kcal�mol-1) and populations of the investigated base mispairs yield

the order: A�T(H) (0.00) < A�T(rH) (0.22/0.63) < A�T(WC) (1.05/0.21) < A�T(rWC) (1.31/

0.16)< A�T�(rwWC) (8.83/3.77�10−7)< A�T�(rwH) (8.96/1.92�10−7)< A��T(rwWC) (10.07/

2.47�10−8)< A��T(wWC) (10.65/1.13�10−8)< A�T�O2(wWC) (12.31/2.07�10−9)< A�T�O2(wH)

(12.74/6.13�10−10)< A��T�(L) (13.51/1.95�10−10)< A�N7�T(rwH) (24.69/1.08�10−18)< A�N7�T

(wH) (25.70/2.24�10−19). Notably, populations of the wobble A�T�(rwWC), A�T�(rwH), A��T

(rwWC), A��T(wWC), A�T�O2(wWC), A�T�O2(wH) (12.74/6.13�10−10) and A��T�(L) tautomerised

states, fitting into the range of the frequencies of the spontaneous point mutations observed

experimentally (10−11–10−9) [115–117], point on their involvement into the processes of the

origin of the spontaneous point mutations.

Notably, the methyl group of the T DNA base does not change its orientation during all

these tautomerisation processes without exception. Moreover, the heterocycles of the DNA

bases remain planar, despite their ability for out-of-plane bending [118–120].

A relatively small non-planarity of the pyrimidine ring of the protonated T+ base occurs

only in the TSA-�T+
A�T(WC)$A��T(rwWC), TSA-�T+

A�T(rWC)$A��T(wWC), TSA-�T+
A�T(H)$A�N7�T(rwH)

and TSA-�T+
A�T(rH)$A�N7�T(wH) transition states. The maximum value of the non-planar dihe-

dral angle reaches 2.5˚ (C2-N3-C4-C5), 3.1˚ (N1-C2-N3-C4), 3.7˚ (C2-N3-C4-C5) and 7.8˚

(N1-C2-N3-C4), respectively. Another structural feature of the protonated T+ base in these

TSs is the deviation of the O4+H / O2+H hydroxyl group from the plane of the pyrimidine ring

(the dihedral angles range from 9.3 to 40.1˚) (Table 3).

Conclusions and perspectives

Novel pathways for mutagenic tautomerization of four classical A�T DNA base pairs, followed

by the significant changes of base orientation within the pair, have been predicted by these QM

results. The transition states with quasi-orthogonal structure (symmetry C1) are highly polar

Table 1. Energetic characteristics (in kcal�mol-1) of the discovered mutagenic tautomerizations of the biologically important A�T DNA base pairs via the single and

double proton transfers obtained at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum with ε = 1 under normal conditions (see

Figs 1 and 2).

Tautomeric transition νi
a ΔGb ΔEc ΔΔGTS

d ΔΔETS
e ΔΔGf ΔΔEg

A�T(WC)$A��T�(L) 362.5 12.31 12.46 11.24 12.56 -1.07 0.10

A��T�(L)$A��T(rwWC) 569.0 9.44 9.01 41.40 43.11 31.95 34.10

A�T(rWC)$A��T(wWC) 753.5 9.75 9.34 44.07 45.97 34.32 36.63

A�T(H)$A�N7�T(rwH) 172.1 24.49 24.69 52.59 52.49 28.10 27.80

A�T(rH)$A�N7�T(wH) 271.9 25.15 25.48 53.56 53.72 28.41 28.24

A��T(rwWC)$A�T�(rwWC) 906.3 -1.61 -1.24 1.39 3.85 3.00 5.08

A��T(wWC)$A�T�O2(wWC) 837.7 1.01 1.66 1.77 4.24 0.76 2.58

A�N7�T(rwH)$A�T�(rwH) 727.4 -15.34 -15.73 -1.98 0.01 13.36 15.73

A�N7�T(wH)$A�T�O2(wH) 797.1 -12.87 -12.96 -1.97 0.18 10.90 13.14

aImaginary frequency at the TS of the tautomeric transition, cm-1.
bThe Gibbs free energy of the product relatively the reactant of the tautomeric transition (T = 298.15 K).
cThe electronic energy of the product relatively the reactant of the tautomeric transition.
dThe Gibbs free energy barrier for the forward tautomeric transition.
eThe electronic energy barrier for the forward tautomeric transition.
fThe Gibbs free energy barrier for the reverse tautomeric transition.
gThe electronic energy barrier for the reverse tautomeric transition.

https://doi.org/10.1371/journal.pone.0199044.t001
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Table 2. Electron-topological, geometrical and energetic characteristics of the intermolecular specific contacts—H-bonds and attractive van der Waals (vdW) con-

tacts in the investigated DNA base pairs and TSs of their tautomeric transformations obtained at the B3LYP/6-311++G(d,p) level of QM theory (ε = 1) (see Figs 1

and 2).

Complex AH���B H-bond / A���B vdW contact ρa Δρb 100�εc dA� � �Bd dH� � �Be ∠AH� � �Bf EAH���B EA���Bg μh

A�T(WC) [16, 19] N6H� � �O4 0.026 0.093 4.39 2.946 1.926 173.5 4.65 1.88

N3H� � �N1 0.040 0.093 6.49 2.886 1.841 178.8 7.58

C2H� � �O2 0.004 0.014 3.40 3.975 2.890 132.3 0.74�

TSA�T(WC)$A��T�(L) N1H� � �N3 0.052 0.101 6.08 2.775 1.727 171.4 9.62�� 0.38

C2H� � �O2 0.004 0.012 14.48 3.722 2.988 125.3 0.61�

A��T�(L) O4H� � �N6 0.087 0.065 4.56 2.578 1.506 174.8 13.47 0.78

N1H� � �N3 0.045 0.101 6.24 2.825 1.780 171.1 7.73

C2H� � �O2 0.003 0.012 3.40 4.098 3.013 125.1 0.57�

TSA-�T+
A�T(WC)$A��T(rwWC) N3+H� � �N1- 0.100 0.026 5.89 2.583 1.470 158.1 13.06 7.38

O4+H� � �N1- 0.045 0.092 10.15 2.740 1.793 154.7 8.85

A��T(rwWC) N3H� � �N6 0.044 0.095 6.22 2.844 1.793 174.7 8.53 3.23

N1H� � �O4 0.035 0.117 3.55 2.832 1.801 177.3 5.82

TSA��T(rwWC)$A�T�(rwWC) N1H� � �O4 0.061 0.142 3.32 2.663 1.598 179.3 11.61�� 3.78

A�T�(rwWC) N6H� � �N3 0.030 0.087 7.07 2.682 1.668 170.4 5.76 2.52

O4H� � �N1 0.059 0.096 5.10 2.955 1.947 167.0 10.21

A�T(rWC) [42] N6H� � �O2 0.024 0.088 5.26 2.962 1.949 172.9 4.38 2.40

N3H� � �N1 0.039 0.093 6.51 2.887 1.843 177.7 7.55

C2H� � �O4 0.004 0.014 3.32 3.696 2.872 132.8 0.77�

TSA-�T+
A�T(rWC)$A��T(wWC) N3+H� � �N1- 0.107 0.005 5.60 2.574 1.442 158.2 13.24 6.83

O2+H� � �N1- 0.043 0.090 9.82 2.741 1.804 152.8 8.82

A��T(wWC) N3H� � �N6 0.042 0.095 6.21 2.858 1.806 173.3 8.31 4.29

N1H� � �O2 0.034 0.115 4.40 2.845 1.814 177.0 5.49

TSA��T(wWC)$A�T�O2(wWC) N1H� � �O2 0.058 0.141 4.10 2.676 1.615 179.2 10.94��� 5.33

A�T�O2(wWC) N6H� � �N3 0.034 0.088 1.71 2.944 1.915 167.1 6.19 3.96

O2H� � �N1 0.071 0.081 0.86 2.644 1.608 171.9 11.43

A�T(H) [42] N6H´� � �O4 0.023 0.086 3.93 2.972 1.963 170.6 4.18 6.16

N3H� � �N7 0.041 0.099 5.75 2.853 1.811 175.9 7.39

C8H� � �O2 0.005 0.016 7.71 3.524 2.835 121.7 0.83�

TSA-�T+
A�T(H)$A�N7�T(rwH) N3+H� � �N7- 0.050 0.097 4.51 2.754 1.737 158.7 8.98 12.65

O4+H� � �N7- 0.019 0.058 9.97 3.021 2.141 147.7 5.18

O4+� � �N6- 0.013 0.043 68.81 2.929 - - 2.58�

A�N7�T(rwH) N3H� � �N6 0.062 0.090 5.55 2.731 1.648 174.5 11.26 9.42

N7H� � �O4 0.055 0.147 2.33 2.671 1.619 175.8 8.61

TSA�N7�T(rwH)$A�T�(rwH) N7H� � �O4 0.070 0.151 2.34 2.603 1.529 175.7 13.76�� 8.37

A�T�(rwH) N6H´� � �N3 0.027 0.082 7.62 3.000 1.981 175.7 5.09 7.36

O4H� � �N7 0.052 0.102 4.48 2.702 1.708 166.4 9.18

A�T(rH) [42] N6H´� � �O2 0.022 0.082 4.95 2.994 1.986 170.9 3.90 5.67

N3H� � �N7 0.041 0.099 5.80 2.856 1.815 176.9 7.34

C8H� � �O4 0.005 0.017 7.97 3.517 2.825 121.9 0.86�

TSA�T(rH)$A�N7�T(wH) N3+H� � �N7- 0.047 0.098 3.26 2.757 1.763 154.8 8.46 10.36

O2+H� � �N7- 0.014 0.044 12.37 3.103 2.293 139.2 4.38

O2+� � �N6- 0.018 0.055 78.70 2.829 - - 3.71�

A�N7�T(wH) N3H� � �N6 0.060 0.092 5.58 2.743 1.663 175.7 10.97 10.35

N7H� � �O2 0.051 0.145 3.17 2.689 1.641 176.3 8.09

TSA�N7�T(wH)$A�T�O2(wH) N7H� � �O4 0.067 0.152 3.15 2.615 1.547 176.3 12.95�� 9.46

(Continued)
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tight ion pairs (A-, N6H2-deprotonated)�(T+, O4/O2-protonated). The tautomerization prod-

ucts—the A��T(rwWC), A�N7�T(rwH) and A�N7�T(wH) pairs—further transform via concerted

asynchronous double proton transfer into the energetically favorable wobble A�T�(rwWC), A�T�

(rwH) and A�T�O2(wH) mispairs (symmetry Cs), respectively. Moreover, it was established in

our recent papers, that wobble A��T(rwWC) base mispair can also be formed from the reverse

A�T(rWC) base pair [20], A��T(wWC) base mispair—from the canonical A�T(rWC) base pair

[19] and A�N7�T(wH) base mispair—from the Hoogsteen A�T(H) base pair [20].

We are currently engaged in elaborating this topic in order to discover biologically impor-

tant H-bonded nucleobase pairs, for which the mechanism of mutagenic tautomerization

plays a key role. Moreover, we suggested that novel mechanism of mutagenic tautomerization

presented in this study could lead to the conversion of an anti-parallel DNA helix to a parallel

DNA helix. We also consider investigation of these tautomerisation mechanism by the partici-

pation of the modified A�T base pairs [121–124] as a task for the future.
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Table 2. (Continued)

Complex AH���B H-bond / A���B vdW contact ρa Δρb 100�εc dA� � �Bd dH� � �Be ∠AH� � �Bf EAH���B EA���Bg μh

A�T�O2(wH) N6H´� � �N3 0.029 0.086 7.38 2.974 1.953 176.4 5.38 8.23

O2H� � �N7 0.059 0.100 4.48 2.664 1.657 168.0 10.16

aThe electron density at the (3,-1) BCP of the specific contact, a.u.
bThe Laplacian of the electron density at the (3,-1) BCP of the specific contact, a.u.
cThe ellipticity at the (3,-1) BCP of the specific contact.
dThe distance between the A and B atoms of the of the AH���B / A���B specific contact, Å.
eThe distance between the H and B atoms of the AH���B H-bond, Å.
fThe H-bond angle, degree.
gEnergy of the specific contact, calculated by Iogansen’s [105], Espinose-Molins-Lecomte [103, 104] (marked with an asterisk) or Nikolaienko-Bulavin-Hovorun [109]

(marked with double asterisk) formulas, kcal�mol-1.
hThe dipole moment of the complex, D.

https://doi.org/10.1371/journal.pone.0199044.t002

Table 3. Selected geometrical parameters, characterizing the non-planarity of the discovered mutagenic tauto-

merizations of the biologically important A�T DNA base pairs via the single and double proton transfers, obtained

at the B3LYP/6-311++G(d,p) level of QM theory in the continuum with ε = 1.

TS of tautomerisation Dihedral angles, degree

(A)N7C5(T)N3C4 (T)HO4/O2C4/C2N3

TSA-�T+
A�T(WC)$A��T(rwWC) 85.0 -9.3

TSA-�T+
A�T(rWC)$A��T(wWC) 60.4 11.8

TSA-�T+
A�T(H)$A�N7�T(rwH) -99.0 -19.9

TSA-�T+
A�T(rH)$A�N7�T(wH) -119.4 40.1

https://doi.org/10.1371/journal.pone.0199044.t003
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