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LIST OF SYMBOLS AND ABBREVIATIONS

ABSQon — sum of absolute charges on nitrogen and oxygen atoms in a molecule
ANN - artificial neural network

ELumo — the energy of the lowest unoccupied molecular orbital

IGCsp — the concentration in mmol/L of the toxicant causing 50% inhibition of
growth to Tetrahymena pyriformis

Log D — distribution coefficient

MaxHp — the largest positive charge on a hydrogen atom

MW — molecular weight

P — the 1-octanol/water partition coefficient

Pnes — 1s the negatively charged molecular surface area in percent’s

pK, — negative logarithm of the ionization constant

PLS — regression on partial least squares

RBFN — radial basis function network with addition of one neuron at a time
RBEFN - radial basis function network with zero error on training vectors
QSAR — quantitative structure-activity relationship

SsOH - electrotopological state index for the hydroxyl group



INTRODUCTION

Actuality. Determining the toxicity of chemicals is one of the most important
stages along the way creation of medicines. This the indicator is of great importance not
only in pharmacology, but also in industry and many other areas of human activity
where there is potential contact with harmful substances — agriculture, perfumes,
detergents, etc. It is known that the experimental study of only one type of toxicity
requires a large number of animals, considerable time and is time consuming. This was
facilitated by the high cost of experimental studies in toxicology. In studies of various
aspects of experimental determination of toxicity, it becomes very important to use
calculation methods to predict these indicators, which allows to assess in advance the
possible risk of using chemicals without additional experiments.

Phenolic compounds are characterized by different medical and health uses
(antioxidant effect, antibacterial effect, anti-cancer effect, cardioprotective effects). That
iIs why they are interesting from a toxilogical point of view. There are different
mechanisms of toxic action of phenols namely polar narcotics, weak acid respiratory
uncouplers, pro-electrophiles and soft-electrophiles.

Artificial neural network (ANN) is a flexible mathematical model. There exist
numerous applications of ANNs in data analysis, pattern recognition, adaptive control,
prediction, classification, identification, etc.

Given the above we can include, that using artificial neural networks for
prediction the toxicity of phenols is actual and useful topic.

The aim of the work is search of optimal parameters of artificial neural networks
to ensure high reliability of predicting the toxicity of phenols, which will contribute to
the further development of computational methods for predicting the toxicity of
chemical compounds.

Achieving this goal determines the solution of the following tasks:

1) choose the optimal number of hidden neurons for construction of feed-forward
neural network and cascade neural network;

2) choose the optimal spread value of the Gaussian transfer function for radial

basis function neural networks;
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3) estimate the effectiveness of the application of artificial neural networks
algorithms to predict the toxicity of chemical compounds by using mean squared error;

4) compare the obtained results with the results found in literature (results of
using quantitative structure-activity relationships (QSARSs) and regression on partial
least squares algorithms (PLSs)).

Subject of study is parameters of algorithms of artificial neural networks.

Object of study is toxicity of phenols based on data on seven molecular
descriptors.

Research methods are algorithms of artificial neural networks.

Practical significance of the obtained results. Obtained results can be useful for
development computational methods, which allows to assess in advance the possible
risk of using chemicals without additional experiments. The results of this work were
presented in the XII International Scientific and Practical Conference “Actual priorities
of modern science, education and practice”, March 29-April 01, 2022, Paris, France and
I11 International Scientific and Theoretical Conference “Theory and practice of modern
science”, April 1, 2022, Krakow, Republic of Poland (certificates of participation are
presented as supplementary information).

Scientific novelty. Artificial neural network algorithms (feed-forward neural
network, cascade neural network and radial basis function neural networks) were first
used to predict the toxicity of phenols based on a set of molecular descriptors. It is
shown that feed-forward neural network is the most effective algorithm among used
ANN algorithms for prediction the toxicity of phenols. It is shown that the results
obtained by using of feed-forward neural network are characterized by higher accuracy
than results obtained by using of QSARs and PLSs.



SECTION 1. LITERATURE REVIEW

1.1 Methods for the toxicity prediction and evaluation of phenols

Determining the toxicity of chemicals is one of the most important stages along
the way creation of medicines. This the indicator is of great importance not only in
pharmacology, but also in industry and many other areas of human activity where there
Is potential contact with harmful substances — agriculture, perfumes, detergents, etc. It
Is known that the experimental study of only one type of toxicity requires a large
number of animals, considerable time and is time consuming. Computer prediction of
the toxicity of chemical compounds began to develop in the 1980s. This was facilitated
by the high cost of experimental studies in toxicology. In studies of various aspects of
experimental determination of toxicity, it becomes very important to use calculation
methods to predict these indicators, which allows you to assess in advance the possible
risk of using chemicals without additional experiments [1].

Phenolic compounds are characterized by different medical and health uses
(antioxidant effect, antibacterial effect, anti-cancer effect, cardioprotective effects). That
Is why they are interesting from a toxilogical point of view. There are different
mechanisms of toxic action of phenols namely polar narcotics, weak acid respiratory
uncouplers, pro-electrophiles and soft-electrophiles. By far the largest number of
toxicity data are available for the inhibition of growth to the protozoan ciliate
Tetrahymena pyriformis [2—5].

Different approaches for classification and prediction of the toxicity of phenols
was used. There have been many attempts to develop QSARs (quantitative structure
activity relationship) for the prediction of the toxicity of phenolic compounds.

In 1996 Cronin and Schultz [6] were able to develop a two-parameter QSAR for
the prediction of phenols toxicity to Tetrahymena pyriformis based on descriptors for
hydrophobicity and electrophilicity:
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log1/1GCsy = 0.671(£0.022)logP — 0.670(+0.055)E, ym0 — 1.123, (1.1)
n =120, r*=0.899, r2,=0.893, s = 0.262, F = 523,

where IGCs is the concentration in mmol/L of the toxicant causing 50% inhibition of
growth to Tetrahymena pyriformis,
P is the octanol-water partition coefficient,
ELumo is the energy of the lowest unoccupied molecular orbital,
n is the number of observations,
r” is the correlation coefficient,
r&, is the cross-validated correlation coefficient using a leave one-one-out approach,
s is the standard error of the estimate,
F is the Fisher criterion and figures in parentheses are the standard errors on the
coefficients.
Garg et al. [7] in 2001 demonstrated a similar relationship to equation 1, but

replaced LUMO with Hammett constant c:

log1/IGCsy = 0.64(+0.04)logP + 0.61(+0.12)0 + 1.84 (+0.13), (1.2)
n =119, r* = 0.896, r2,=0.887, s = 0.265, F not given.

Mark Cronin et al. in [5] have proposed and compared different approaches for
developing of QSARs, which are used for the prediction of 200 phenols toxicity to
Tetrahymena pyriformis. Among them are response-surface approach or two-parameter
approach, stepwise regression or seven-parameter approach, two dimension and three
dimension partial least squares. Disadvantages of presented in [5] approaches are
observation of outliers. But in general all these approaches was found to be a good
model for solving the task of prediction of the phenols toxicity.

Aynur Aptula et al. [8] have used the stepwise linear discriminant analysis (LDA)
for classification of the toxic mechanisms of action for 221 phenols to Tetrahymena
pyriformis. Using the linear discriminant analysis for classification implies the presence

of information about a priori groups of compounds. That is why 221 phenols were a
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priori grouped into the four classes according to the different mechanisms of toxic
action. This classification was based on molecular descriptors such as hydrophobicity
with and without correction for ionisation, acidity constant, frontier orbital energies and
hydrogen-bond donor and acceptor counts. Results of using the linear discriminant
analysis are 86—89% overall correct classification of phenols into four classes according
to the mechanisms of their toxic actions.

Dieguez-Santana et al. [9] were used the multiple linear regression technique to
develop a linear quantitative-structure toxicity relationship (QSTR) model for prediction
of phenols toxicity to Tetrahymena pyriformis. The obtained model was statistically
significant and robust indicating the capability of predicting the aquatic toxicity of
phenol derivatives in the impairment of the population growth of Tetrahymena
pyriformis.

Abbasitabar and Zare-Shahabadi [10] were used genetic algorithm and decision
tree-based method for prediction of toxicity of phenols to Tetrahymena pyriformis. The
advantage of proposed algorithm is that one can use the resultant tree to predict phenol
toxicity with high accuracy with no a priori knowledge about chemical class or
mechanism of action of phenols.

Chen et al. [11] were used popular classification algorithm random forest learner
for in silico prediction of toxic action mechanisms of phenols to Tetrahymena
pyriformis. One global and four local classification models were constructed by
employing random forest in the cost-sensitive learning framework. The statistical results
in the paper confirmed that random forest was a competitive tool for building
classification models of toxicity mechanisms prediction.

Ren [12] was investigated the possibility of using the decision tree-based
approach for classification as well as for prediction of toxic action mechanisms of
phenols. It was created a three level decision tree with six terminal nodes. This decision

tree-based approach achieved prediction accuracy 85%.



1.2 Medical and health uses for phenolic compounds

Phenols form a large and structurally diverse group of compounds. Phenolic
compounds are own defined as compounds that possess an aromatic ring with at least
one hydroxyl group, and their structure can vary from simple molecule to complex
polymer with high molecular weight. These compounds are widely used both in
industry and as consumer products (components of dyes, polymers, pharmaceuticals and
other organic substances, textiles, leather, paper, oil). They are interesting from a
toxilogical point of view. The toxicity of phenols involves a number of different
mechanisms of toxic action, respiratory uncouplers and electrophilicity [8, 13, 14].

Phenol is toxic in pure form. Despite this fact phenol have many medicinal
applications. Such as injection phenol is used for treatment of muscle spasticity. Phenol
Is ingredient of vaccine preservative that is used for contaminating the vaccine
solutions. Phenolic compounds are characterized by numerous benefits for human
health. One of the most important of them is antioxidant property. They are naturally
occurring compounds present in many foods, including fruits, vegetables, cereals [2, 3,
15]. Phenolic compounds are divided into phenolic acids, flavonoids, lignans and
stilbenes according to the chemical structures [4].

The numerous applications of phenolic compounds especially flavonoids on
human health treatments and laboratory using include [2—4, 16]:
— antioxidant effect;
— antibacterial effect (for example, against skin acne problems);
— anti-cancer effect (numerous studies validated that polyphenols are responsible for
lowering tumor growth);
— cardioprotective effects (it was investigated that the consumption of polyphenols
minimizes the risk of coronary heart diseases);
— immune system promoting and anti-inflammatory effects (phenolic compounds have
demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis,
and inflammatory bowel disease);
— skin protective effect from UV radiation;

— antidiabetic effect.
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The use of phenolic compounds are the promising candidate for future medical

and pharmaceutical product development as an ingredient to promote human health.

1.3 Artificial neural networks: basics

Artificial neural network algorithms are modern mathematical models that are
simulates human brain functioning.

Comparison between a biological neuron and an artificial neural network neuron
Is shown in Figure 1.1 [18, p. 205].

A)

dendrites axon

Xp— —"Yi

cell body /{@ x /

© ©
W \s %\gj

synapse synapses

input
x
output

Figure 1.1. Comparison between a biological neuron and an artificial neural
network neuron: A) biological neuron; B) artificial neural network neuron; C) biological

synapse; D) artificial neural network synapses [18, p. 205]

Many different architectures and types of artificial neural networks are known.
Acrtificial neural networks consist of neurons (artificial neurons). Other name of neurons
is hidden units. Artificial neurons are connected with weights and form input, hidden
and output layers. Neurons process information and these signals are transfer to the next

layer by means of linear or non-linear activation functions [17, 18].
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One should choose the transfer or activation functions in each layer, the learning
rule, and the number of neurons in each layer for constructing the architecture of an
artificial neural network. The input signals multiplied by the weight parameters are
summed and passed through a transfer function to produce the output for neurons
[19-21].

ANN is a flexible mathematical model. There exist numerous applications of
ANNSs in data analysis, pattern recognition, adaptive control, etc. [22—24].

Let consider some types of ANNS.

The radial basis function network is among the most commonly used types of
ANNSs [24—27]. The radial basis function network is a supervised three-layered feed-
forward ANN that uses radial basis functions as activation functions. The radial basis
function network was formulated initially by Broomhead and Lowe [28].

The Elman network and dynamic neural network are the recurrent networks. The
prominent feature of the recurrent network architecture is the presence of feedback or
blocks of a dynamic delay. The Elman neural network is a two-layer network with the
feedback from the output layer to the input of the hidden layer. Dynamic neural network
is the feed-forward input-delay back propagation network [21, 29].

Probabilistic neural network is one of modifications of a radial basis function
network. Usually, a spherical Gaussian basis function is used, although many other
functions work equally well. Every hidden neuron is intended for single pattern storage
of training set. The output layer of probabilistic neural network is the competitive layer
which is used to determine the most likely class for a given input vector [21, 30].

Feed-forward neural network is the simplest and widely most useful type of the
artificial neural networks. The signals moves from the input neurons, through the
hidden neurons, and to the output neurons. This feature provided the name of this type
of artificial neural network. In cascade neural network hidden neurons are added to the
network once and keep unchanged in the afterwards [21, 31, 32].

The Kohonen network is a simple two-layer unsupervised network. This type of
ANN uses a competitive learning algorithm. During the training stage, the input vector

Is presented to the network and only one neuron (winning neuron) is activated. The
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winning neuron is selected as the neuron that has the smallest Euclidean distance to the
input vector. Weight coefficients of the winning neuron are modified according to the
learning rule. A comprehensive description of the competitive learning algorithm was
published elsewhere. The Kohonen network is intended for the classification of input
vectors into groups; the number of classes must be assigned a priori [33, 34]

Let present some examples of applying ANN techniques for solving
pharmaceutical problems: virtual screening for classifying of compound database [35,
36]; control the process of the pharmaceutical production [37—39]; the drug design
research [40—42].

Conclusions to section 1

1. In studies of various aspects of experimental determination of toxicity, it
becomes very important to use calculation methods to predict these indicators, which
allows you to assess in advance the possible risk of using chemicals without additional
experiments.

2. Phenolic compounds are widely used both in industry and as consumer
products. They are interesting from a toxilogical point of view. The toxicity of phenols
involves a number of different mechanisms of toxic action, respiratory uncouplers and
electrophilicity.

3. Artificial neural networks have received much more attention recently. Thanks
to their adaptive structure and learning capability, they are success fully used to solve

classification, identification and prediction tasks.
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SECTION 2. EXPERIMENTAL PART

2.1 Data set

Artificial neural networks were developed on a training subset of 197 phenols,
and validated by an external testing subset of 20 compounds [5]. The validation subset
(testing subset) of compounds was selected prior to ANN model development, and these
data were not used in the development of models. All chemicals and their toxicity are
listed in Tables 2.1 and Table 2.2.

The toxicity values were from a population growth impairment test using the
ubiquitous freshwater ciliate Tetrahymena pyriformis (strain GL-C), performed
following the protocol previously described by Schultz in 1997 [43]. The 50% growth
inhibition concentration, 1GCs,, was determined for each compound using the Probit
Analysis routine in the Statistical Analysis System (SAS) software (SAS Institute
1989). All statistical analyses were performed on nominal concentrations; chemical
analyses of concentrations were not performed.

Physico-chemical descriptors which are calculated for the phenols and listed in
Tables 2.1, 2.2:

1) Log D — distribution coefficient at pH = 7.35, which was calculated according to the

expression:

logD =logP + log(1 + 10PH~PKa), (2.1)

where log P — logarithm of the 1-octanol/water partition coefficient, pK, — negative
logarithm of the ionization constant;

2) ELumo — energy of the lowest unoccupied molecular orbital,

3) MW — molecular weight;

4) Pnec — is the negatively charged molecular surface area in percent’s;

5) ABSQon — sum of absolute charges on nitrogen and oxygen atoms in a molecule;

6) MaxHp — the largest positive charge on a hydrogen atom;

7) SsOH — electrotopological state index for the hydroxyl group.
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Table 2.1. Chemicals, their toxicity to Tetrahymena pyriforms and significant physico-chemical descriptors (training subset)

N Compound Toxicity | LogD | E.umo | MW Pnee | ABSQon | MaxHp | SsOH
1 4-Hydroxyphenylacetic acid -150| -2,41| 0,140 | 152,16 | 40,44 1,007 0,229 | 17,22
2 3-Hydroxybenzyl alcohol -1,04| 0,30| 0,388 124,15| 47,97 0,784 | 0,210| 17,38
3 4-Carboxylphenol -1,02| -1,36| -0,482| 138,13 | 39,71 1,099 0,221 | 17,14
4 3-Hydroxy-4-methoxybenzyl alcohol -0,99 0,00 0,338]| 154,18 | 42,21 1,121 0,219 | 17,86
5 4-Hydroxy-3-methoxybenzylamine -0,97 0,01| 0,266| 153,2| 38,43 1,053 0,181 | 9,16
6 4-Hydroxyphenethyl alcohol -0,83 0,62| 0,333| 138,18 | 35,58 0,754 | 0,217| 17,39
7 3-Carboxylphenol -0,81| -1,77| -0,574| 138,13 | 38,7 1,117 0,200 | 17,20
8 4-Hydroxybenzamide -0,78 0,23| -0,177| 137,15 | 41,47 1,103| 0,219| 8,79
9 4-Hydroxy-3-methoxybenzyl alcohol -0,70 0,00 0,412| 154,18 | 44,33 1,116 0,21 | 17,84
10 | 2,6-Dimethoxyphenol -0,60 0,77| 0,388 | 154,18 | 42,64 1,105 0,177 9,34
11 | 2,4,6-Tris(dimethylamino-methyl)phenol -0,52| -0,75 0,425 | 265,45 | 32,71 1,438 0,217 | 10,38
12 | Salicylic acid -0,51| -2,28 -0,59 | 138,13 | 36,61 1,117 0,200 | 17,31
13 | 2-Methoxyphenol -0,51 1,19| 0,391| 124,15| 41,6 0,754 | 0,173| 8,99
14 | 5-Methylresorcinol -0,39 122 0,341 | 124,15| 43,34 0,748 | 0,219| 17,67
15 | 4-Methylcyanophenol -0,38 0,71 0,063 | 133,16 | 45,98 0,566 | 0,217| 8,84
16 | 3-Hydroxyacetophenone -0,38 1,38 | -0,459| 136,16 | 35,77 0,816 0,175| 8,91
17 | 2-Ethoxyphenol -0,36 194 | 0,422 138,18 | 39,16 0,751| 0,173| 9,12
18 | 4-Acetylphenol -0,30 1,35 -0,38 | 136,16 | 38,63 0,793 0,22 | 8,83
19 | 3-Ethoxy-4-methoxyphenol -0,30 1,78| 0,318 168,21 | 41,16 1,097 0,179 | 9,12
20 | 2-Methylphenol -0,29 0,44| 0,370| 108,15 | 34,18 0,394 0,166| 8,92
21 | 2-Hydroxybenzamide -0,24 1,37 | -0,265| 137,15 41,05 1,125 0,212 | 8,98
22 | Phenol -0,21 1,48 | 0,398 | 94,12 | 39,97 0,394 | 0,166| 8,63
23 | 4-Methylphenol -0,18 1,94| 0,431 108,15 | 36,58 0,394 | 0,166| 8,76
24 | 4-Hydroxy-3-methoxyphenethyl alcohol -0,18 0,33| 0,324| 168,21 | 36,72 1,188 0,209 | 17,86
25 | 3-Acetamidophenol -0,16| 0,73| 0,210] 151,18 | 40,99 1,047 0,221| 8,97
26 | 3-Hydroxy-4-methoxybenzaldehyde -0,14| 0,98| -0,489| 152,16 | 42,85 1,148 | 0,221| 9,14
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27 | 4-Hydroxy-3-methoxyaceto-phenone -0,12 1,32 | -0,404| 166,19 | 41,15 1,103 0,175| 9,18
28 | 3,5-Dimethoxyphenol -0,09 1,42 | 0,415| 154,18 | 46,71 1,094 0,220 9,10
29 | 2-Hydroxyethylsalicylate -0,08 1,52 | -0,475| 182,19 | 43,04 1,476 0,209 | 17,61
30 | 3-Methylphenol -0,06 194 | 0,394 | 108,15| 37,11 0,394 0,166| 8,81
31 | Methyl-3-hydroxybenzoate -0,05 1,88 | -0,485| 152,16 | 45,04 1,105| 0,177| 8,95
32 | 3-Methoxy-4-hydroxybenzaldehyde -0,03 1,05| -0,478| 152,16 | 41,73 1,148 | 0,221| 9,09
33 | 4-Hydroxy-3-methoxybenzonitrile -0,03 155| -0,429| 149,16 | 48,16 0,954| 0,172 9,10
34 | 3-Ethoxy-4-hydroxybenzaldehyde 0,01 161| -0,452| 166,19 | 39,95 1,157 0,181 | 9,22
35 | 4-Fluorophenol 0,02 1,771 0,059| 112,11 | 46,18 0,394 0,166 | 8,59
36 | 2-Cyanophenol 0,03 1,21 | -0,509 | 119,13 | 46,77 0,602 0,172 | 8,89
37 | 5-Fluoro-2-hydroxyacetophenone 0,04 245| -0,786| 154,15 | 40,83 0,738 0,173| 9,02
38 | 2,4-Dimethylphenol 0,07 2,40 0,399 | 122,18 | 37,69 0,394| 0,166| 9,04
39 | 2-Hydroxyacetophenone 0,08 1,96 | -0,517| 136,16 | 36,51 0,748 | 0,168| 9,06
40 | 2,5-Dimethylphenol 0,08 2,40 0,347| 122,18 | 35,50 0,394| 0,166| 9,10
41 | Methyl-4-hydroxybenzoate 0,08 1,81 | -0,397| 152,16 | 41,62 1,086 0,221 | 8,86
42 | 3,5-Dimethylphenol 0,11 2,40 | 0,387 | 122,18 | 32,21 0,394 0,166| 8,99
43 | 4°-Hydroxypropiophenone 0,12 191| -0,443| 150,19 | 34,46 0,793 0,22| 9,02
44 | 2,3-Dimethylphenol 0,12 2,40 0,374| 122,18 | 39,02 0,394| 0,166| 9,10
45 | 3,4-Dimethylphenol 0,12 2,40| 0,436| 122,18 | 37,93 0,394| 0,166| 8,94
46 | 2-Ethylphenol 0,16 2,47 | 0,386 | 122,18 | 35,87 0,394| 0,166| 9,11
47 | Syringaldehyde 0,17 0,73| -0,505| 182,19 | 44,45 1,454 0,179 | 9,44
48 | Salicylhydrazide 0,18 0,58 | -0,443| 152,17 | 36,12 1,260 | 0,228| 9,10
49 | 2-Chlorophenol 0,18 2,01| 0,030| 128,56 | 39,39 0,393| 0,166| 8,79
50 | 4-Hydroxy-2-methylacetophenone 0,19 1,83 | -0,290| 150,19 | 37,40 0,748 | 0,168 9,01
51 | 4-Ethylphenol 0,20 2,47 | 0,435| 122,18 | 30,65 0,394| 0,166| 8,85
52 | 3-Ethylphenol 0,23 2,47 0,402 | 122,18 | 33,36 0,394| 0,166| 8,94
53 | Salicylaldoxime 0,25 1,87 | -0,312| 137,15 | 44,58 0,903| 0,208| 17,14
54 | 2,3,6-Trimethylphenol 0,28 2,86| 0,382| 136,21 | 35,85 0,359 | 0,217| 9,39
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55 | 2,4,6-Trimethylphenol 0,28 2,86 | 0,431| 136,21 | 33,26 0,359| 0,217| 9,33
56 | 2-Hydroxy-5-methylacetophenone 0,31 2,42 | -0,483| 150,19 | 38,52 0,747 0,168 | 9,18
57 | 2-Bromophenol 0,33 2,64 | -0,049| 173,01 | 36,02 0,394| 0,166| 8,87
58 | 5-Bromo-2-hydroxybenzylalcohol 0,34 1,31| -0,007| 203,04 | 33,63 0,786 | 0,210| 17,72
59 | 2,3,5-Trimethylphenol 0,36 2,86| 0,358 | 136,21 | 33,03 0,360 0,217| 9,28
60 | 3-Methoxysalicylaldehyde 0,38 1,34| -0,454| 152,16 | 41,23 1,163 0,18 | 9,23
61 | Salicylhydroxamic acid 0,38 0,47| -0,584| 153,15 39,71 1,255| 0,245| 17,24
62 | 2-Chloro-5-methylphenol 0,39 2,48 | 0,019| 142,59 | 35,97 0,355 0,218| 8,97
63 | 4-Allyl-2-methoxyphenol 0,42 2,20 0,393 | 164,22 | 36,76 0,731 0,219| 9,25
64 | 2-Hydroxybenzaldehyde 0,42 1,55| -0,433| 122,13 | 39,53 0,819 0,175| 8,88
65 | 2,6-Difluorophenol 0,47 169| -0,321| 130,1| 45,75 0,379 0,175| 8,46
66 | Ethyl-3-hydroxybenzoate 0,48 2,41 -0,453| 166,19 | 42,38 0,973| 0,181] 9,02
67 | 4-Cyanophenol 0,52 1,47 | -0,413| 119,13 | 47,37 0,602 0,172 8,74
68 | 4-Propyloxyphenol 0,52 2,37| 0,330 152,21 | 36,45 0,732 0,219 | 18,27
69 | 4-Chlorophenol 0,55 2,43 0,095| 128,56 | 33,48 0,394| 0,166| 8,70
70 | Ethyl-4-hydroxybenzoate 0,57 2,35| -0,367| 166,19 | 39,73 1,083 0,221 | 8,92
71 | 5-Methyl-2-nitrophenol 0,59 1,83 | -1,153| 153,15| 31,03 0,359 | 0,217| 9,10
72 | 2-Bromo-4-methylphenol 0,60 2,91 -0,012| 187,04 | 32,46 0,392 0,167 | 9,00
73 | 2,4-Difluorophenol 0,60 198| -0,318| 130,1| 40,10 0,379| 0,176 | 8,50
74 | 3-1sopropylphenol 0,61 2,82| 0,415| 136,21 | 31,28 0,394 0,166 | 9,06
75 | 5-Bromovanillin 0,62 1,39 | -0,702| 231,05 41,27 1,163 0,180 | 9,33
76 | a;a; a-Trifluoro-4-cresol 0,62 2,46 | -0,348| 162,12 | 39,49 0,394| 0,166| 8,66
77 | Methyl-4-methoxysalicylate 0,62 2,43 | -0,428| 182,19 | 45,92 1,424 0,179 | 9,34
78 | 4-Bromophenol 0,68 249 0,020| 173,01 | 34,76 0,394| 0,166 8,74
79 | 2-Chloro-4,5-dimethylphenol 0,69 2,95| 0,053 | 156,62 | 35,14 0,384 0,173 | 9,09
80 | 4-Butoxyphenol 0,70 2,90 | 0,330| 166,24 | 32,98 0,732 0,219 | 8,97
81 | 4-Chloro-2-methylphenol 0,70 2,89 | 0,080| 142,59 | 30,52 0,394 0,166| 8,99
82 | 3-Tert-butylphenol 0,73 3,17| 0,431| 150,24 | 29,49 0,394 | 0,166| 9,18
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83 | 2,6-Dichlorophenol 0,73 2,11 -0,259| 163,00 | 31,36 0,388| 0,169| 8,94
84 | 2-Methoxy-4-propenylphenol 0,75 3,00 -0,041| 164,22 | 37,8 0,734 0,219| 9,25
85 | 3-Chloro-5-methoxyphenol 0,76 2,64 | 0,027 | 158,59 | 38,27 0,749 0,175| 8,96
86 | 4-Chloro-3-methylphenol 0,80 2,89 | 0,133 | 142,59 | 35,76 0,394| 0,166| 8,88
87 | 2-1sopropylphenol 0,80 2,82 | 0,408 | 136,21 | 33,08 0,394 0,166| 9,28
88 | 2,6-Dichloro-4-fluorophenol 0,80 1,53 | -0,568| 180,99 | 25,83 0,380 0,175| 8,90
89 | 4-lodophenol 0,85 2,91 0,024 | 220,01 | 34,63 0,394| 0,166| 8,75
90 | 2,2°-Biphenol 0,88 1,48 | -0,239 | 186,22 | 42,72 0,788 | 0,166| 8,63
91 | 4-Tert-butylphenol 0,91 3,17| 0,471| 150,24 | 30,7 0,360 | 0,217| 9,02
92 | 3,4,5-Trimethylphenol 0,93 2,86| 0,430| 136,21 | 37,65 0,360 0,217| 9,12
93 | 2,2° 4,4°-Tetrahydroxybenzophenone 0,96 2,64 | -0,786| 246,23 | 45,66 1923 0,221| 8,85
94 | 4-Sec-butylphenol 0,98 3,35| 0,445 150,24 | 29,41 0,360 0,217| 9,01
95 | 3-Hydroxydiphenylamine 1,01 2,62 | 0,104 | 185,24 | 42,67 0,610 0,216| 9,02
96 | 4-Hydroxybenzophenone 1,02 2,81 | -0,485]| 198,23 | 40,89 0,744 0,167 | 9,10
97 | 2,4-Dichlorophenol 1,04 291| -0,245| 163,00 | 26,87 0,390 0,169| 8,85
98 | 2,4,6-Tribromoresorcinol 1,06 2,74 -0,61 | 346,79 | 32,56 0,757 0,218 | 18,47
99 | Benzyl-4-hydroxyphenyl ketone 1,07 2,44 -0,375| 212,26 | 40,24 0,750 | 0,166 | 18,28
100 | 4-Chloro-3-ethylphenol 1,08 3,42 0,141 156,62 | 29,57 0,390 0,170 9,01
101 | 2-Phenylphenol 1,09 2,94 -0,119| 170,22 | 40,93 0,359 | 0,217 9,56
102 | 2,5-Dichlorophenol 1,13 2,66 | -0,325| 163,00 | 24,11 0,389 0,169| 8,88
103 | 3-Chloro-4-fluorophenol 1,13 2,59 | -0,264| 146,55 | 38,47 0,383| 0,174| 8,69
104 | 3-Bromophenol 1,15 2,62| -0,074| 173,01 | 32,25 0,394 0,166 | 8,78
105 | 6-Tert-butyl-2,4-dimethylphenol 1,16 409| 0,455, 178,3| 27,88 0,359 0,217 | 9,86
106 | 4-Chloro-3,5-dimethylphenol 1,20 3,35| 0,147 | 156,62 | 35,03 0,394 0,166 | 9,06
107 | 2-Hydroxybenzophenone 1,23 3,39| -0,629| 198,23 | 41,96 0,810 0,175] 19,06
108 | 4-Tert-pentylphenol 1,23 3,70 0,470| 164,27 | 27,15 0,360 | 0,217| 9,10
109 | 4-Bromo-3,5-dimethylphenol 1,27 341 0,109| 201,07 | 32,55 0,395| 0,166| 9,10
110 | 4-Bromo-6-chloro-2-cresol 1,28 3,46 | -0,226 | 221,48 | 33,75 0,393 0,167 | 9,18
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111 | 4-Cyclopentylphenol 1,29 3,44 | 0,437 | 162,25 | 30,74 0,405 0,160 | 9,10
112 | 2-Tert-butylphenol 1,29 3,17| 0,436 | 150,24 | 31,61 0,394| 0,166| 9,45
113 | 2-Tert-butyl-4-methylphenol 1,30 3,63| 0477 164,27 | 31,02 0,394 0,166 | 9,57
114 | 2-Hydroxydiphenylmethane 1,31 3,47 | 0,242| 184,25 | 38,66 0,360 | 0,217| 9,31
115 | Butyl-4-hydroxybenzoate 1,33 3,41 | -0,367| 194,25| 35,89 1,083| 0,221| 9,37
116 | 3-Phenylphenol 1,35 3,23| 0,161| 170,22 | 40,68 0,360 | 0,217| 9,27
117 | n-Pentyloxyphenol 1,36 3,43| 0,330| 180,27 | 29,37 0,732 0,219 | 9,25
118 | 2,4-Dibromophenol 1,40 3,31 -0,349| 2519 31,45 0,397 0,164 | 8,98
119 | 2,4,6-Trichlorophenol 1,41 2,715 | -0,502| 197,44 | 21,69 0,385 0,171 9,01
120 | 2-Hydroxy-4-methoxybenzophenone 1,42 3,43 | -0,574| 228,26 | 43,71 1,196 0,172 | 9,75
121 | Isoamyl-4-hydroxybenzoate 1,48 3,76 | -0,363| 208,28 | 34,01 1,083| 0,221| 9,57
122 | 3,5-Dichlorosalicylaldehyde 1,55 2,41 | -0,893| 191,01 | 27,49 0,742 0,173| 9,10
123 | 4-Cyclohexylphenol 156 4,00| 0,442 176,28 | 29,22 0,360 | 0,217| 9,14
124 | 3,5-Dichlorophenol 1,57 3,25| -0,285| 163,00 | 25,71 0,390 0,169| 8,82
125 | 3,5-Di-tert-butylphenol 164 486| 0,470| 206,36 | 24,80 0,390 0,169| 9,72
126 | 3,5-Dibromosalicylaldehyde 1,64 2,67 -0,924| 279,91 | 31,64 0,821 0,174 | 9,22
127 | 3,4-Dichlorophenol 1,75 3,19| -0,236| 163,00 | 29,66 0,390 0,169| 8,79
128 | 4-Bromo-2,6-dichlorophenol 1,78 2,69 | -0,514| 241,89 | 25,89 0,389 | 0,169| 9,05
129 | 2,6-Di-tert-butyl-4-methylphenol 1,80 532| 0,383| 220,39 | 27,73 0,359 | 0,217| 10,38
130 | 4-Chloro-2-isopropyl-5-methyl-phenol 1,85 422 0,114 | 184,68 | 28,98 0,394 0,166 | 9,53
131 | 2,4,6-Tribromophenol 2,03 3,28 | -0,621| 330,79 | 27,92 0,399| 0,162| 9,22
132 | 4-Heptyloxyphenol 2,03| 450| 0,329 208,33 | 27,82 0,732 0,219 | 9,07
133 | 4-Tert-octylphenol 2,10 493| 0,474 | 206,36 | 25,02 0,360 | 0,217| 9,26
134 | 4-(4-Bromophenyl)phenol 2,31 3,95| -0,399| 249,11 | 36,69 0,360 0,217 | 9,12
135 | 3,5-Diiododsalicylaldehyde 2,34 290| -0,901| 373,91 | 34,31 0,708 0,194| 9,28
136 | 2,3,5-Trichlorophenol 2,37 2,84 -0,578| 197,44 | 22,87 0,350 0,220| 8,98
137 | 4-Nonylphenol 2,47 6,19| 0,429| 220,39 | 24,65 0,360 0,217| 9,15
138 | Nonyl-4-hydroxybenzoate 2,63| 6,07| -0,368| 264,40 | 29,71 1,083| 0,221| 9,12
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139 | 2,4,6-Trinitrophenol -0,16 | -498| -2,534| 229,12 | 30,49 0,359 | 0,217 9,13
140 | 3,4-Dinitrophenol 0,27| 0,24| -1,863| 184,12 | 33,92 0,386| 0,172 8,84
141 | 2,6-Dinitrophenol 054| -167| -1,952| 184,12 | 31,00 0,393| 0,166| 9,05
142 | 2,6-Dichloro-4-nitrophenol 0,63| -0,66| -1,441| 208,00| 16,45 0,388 0,169| 9,03
143 | 2,5-Dinitrophenol 0,95| -0,16| -2,262| 184,12 | 25,53 0,385| 0,172| 8,96
144 | 2,4-Dinitrophenol 108 | -157| -1,887| 184,12 | 27,64 0,359 | 0,217| 8,92
145 | 2,6-Dinitro-4-cresol 1,23| -0,87| -1,893| 198,15 | 31,03 0,359 | 0,217| 9,17
146 | 4-Bromo-2-fluoro-6-nitrophenol 1,62 0,13 | -1,650| 236,00 | 19,04 0,354 0,218 | 9,52
147 | Pentafluorophenol 1,64 0,80 -1,296| 184,07| 1,90 0,370 0,181 8,30
148 | 4,6-Dinitro-2-methylphenol 1,72 -0,73| -1,825| 198,15| 27,5 0,359 0,217, 9,21
149 | 2,4-Dichloro-6-nitrophenol 1,75 0,70 -1,579| 208,00 | 15,72 0,384| 0,172| 9,06
150 | Pentachlorophenol 205 2/11| -0,978| 266,32 | 17,97 0,381| 0,175| 9,20
151 | 2,3,5,6-Tetrachlorophenol 2,22 1,80 | -0,817| 231,88 | 21,35 0,383| 0,173| 9,14
152 | Pentabromophenol 266 | 3,18| -1,193| 488,57 | 27,07 0,403 0,16 | 9,52
153 | 2,3,4,5-Tetrachlorophenol 2,71 3,16 | -0,752| 231,88 | 21,36 0,384 0,173 | 9,05
154 | 4-Acetamidophenol -0,82 0,34| 0,253| 151,18 | 39,49 1,024 0,218| 8,88
155 | 3-Aminophenol -052| 0,34| 0,522 109,14 | 46,32 0,684 | 0,162| 8,73
156 | 4-Aminophenol -0,08| -0,29| 0,439| 109,14 | 42,89 0,684 | 0,162| 8,70
157 | 3-Methylcatechol 0,28 1,34 | 0,268 | 124,15 | 39,79 0,744 | 0,219| 17,81
158 | 2-Amino-4-tert-butylphenol 0,37 2,13 | 0,418 165,26 | 29,75 0,677 0,164 | 9,18
159 | 4-Methylcatechol 0,37 1,34| 0,332 ] 124,15| 41,10 0,744 | 0,219| 17,64
160 | 1,2,4-Trihydroxybenzene 0,44 0,06 | 0,133| 126,12 | 48,00 1,116 0,220 | 26,04
161 | Hydroquinone 047| 064| 0,233] 110,12 | 45,14 0,748 | 0,219] 17,29
162 | Catechol 0,75| 0,88| 0,297| 110,12 | 42,31 0,744 | 0,219| 17,34
163 | 2-Amino-4-chlorophenol 0,78 1,67 | 0,043 | 143,58 | 34,89 0,681 0,162| 8,86
164 | 1,2,3-Trihydroxybenzene 0,85 0,28| 0,029| 126,12 | 45,53 1,113 | 0,220 | 26,09
165 | 2-Aminophenol 094 244| 0,406| 109,14 | 38,19 0,681 0,162| 8,79
166 | 4-Chlorocatechol 1,06 2,13| 0,001| 144,56 | 36,19 0,738 0,220 175
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167 | Chlorohydroquinone 1,26 151| -0,111| 144,56 | 40,15 0,740 0,220 | 17,54
168 | 4-Amino-2-cresol 1,31 0,17| 0,413| 123,17 | 39,15 0,654 0,216 | 8,99
169 | 2,3-Dimethylhydroquinone 1,41 1,56 | 0,215] 138,18 | 40,41 0,747 0,219 | 18,23
170 | 4-Amino-2,3-dimethylphenol 144 0,63| 0,406 | 137,20 | 39,25 0,681 0,163| 9,17
171 | Bromohydroquinone 1,68 2,00| -0,186| 189,01 | 38,80 0,752 0,219 | 17,68
172 | Tetrachlorocatechol 1,70 3,07| -0,830| 247,88 | 21,27 0,723 | 0,221| 18,17
173 | Phenylhydroquinone 2,00 2,09 | -0,229| 186,22 | 44,77 0,750| 0,219| 18,86
174 | 3,5-Di-tert-butylcatechol 2,11 4,26 0,294 | 222,36 | 28,05 0,744 0,219 | 19,63
175 | Methoxyhydroquinone 2,20 0,47| 0,226 | 140,15 | 46,98 1,103 0,220 | 17,88
176 | 3-Hydroxy-4-nitrobenzaldehyde 0,27 0,43 | -1,755| 167,13 | 26,22 0,751 0,168 | 8,99
177 | 5-Hydroxy-2-nitrobenzaldehyde 0,33 0,65| -1,486| 167,13 | 29,79 0,787 0,186 | 8,87
178 | 2-Amino-4-nitrophenol 0,47 0,59| -1,116| 154,14 | 30,05 0,651 0,217| 8,88
179 | 4-Methyl-2-nitrophenol 0,57 1,92 | -1,141| 153,15 | 25,90 0,359 | 0,217| 8,96
180 | 4-Hydroxy-3-nitrobenzaldehyde 0,61| -0,36| -1,456| 167,13 | 26,28 0,751 0,168 | 8,94
181 | 4-Nitrosophenol 0,65 0,51 | -0,796| 123,12 | 41,47 0,839 0,182 | 8,71
182 | 2-Nitroresorcinol 0,66 -0,98| -1,321| 155,12 | 21,13 0,747 0,219 17,72
183 | 4-Methyl-3-nitrophenol 0,74 2,37| -1,109| 153,15 | 28,46 0,393| 0,167| 8,88
184 | 2-Chloromethyl-4-nitrophenol 0,75 0,73| -1,195| 187,59 | 28,47 0,393| 0,167| 9,11
185 | 2-Bromo-2°-hydroxy-5°-nitroacetanilide 0,87 0,71| -1,105| 275,07 | 22,41 1,041 0,232 9,21
186 | 4-Amino-2-nitrophenol 0,88 0,53 | -1,120| 154,14 | 29,59 0,683 0,162 | 8,91
187 | 2-Fluoro-4-nitrophenol 1,07 0,01| -1,333| 157,11 | 24,13 0,353 0,219| 9,01
188 | 5-Fluoro-2-nitrophenol 1,13 0,76 | -1,447| 157,11 | 19,23 0,386 0,172 | 8,78
189 | 4-Nitrocatechol 1,17 1,05| -1,160| 155,12 | 31,31 0,744 | 0,219] 17,55
190 | 2-Amino-4-chloro-5-nitrophenol 1,17 2,38 | -0,960| 188,58 | 28,76 0,681 0,162| 8,99
191 | 4-Fluoro-2-nitrophenol 1,38 1,21 | -1,447| 157,11 | 25,27 0,354| 0,219| 8,93
192 | 4-Nitrophenol 1,42 1,21 | -1,065| 139,12 | 26,69 0,394| 0,166| 8,72
193 | 2-Chloro-4-nitrophenol 1,59 0,30 -1,264| 173,56 | 23,75 0,393| 0,166| 8,87
194 | 4-Chloro-6-nitro-3-cresol 164| 231| -1,346| 187,59 | 25,47 0,394 0,166| 9,09
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195 | 3-Methyl-4-nitrophenol 1,73 1,74 -1,007 | 153,15 | 26,54 0,360 0,217 | 8,90
196 | 4-Bromo-2-nitrophenol 1,87 1,41 -1,398| 218,01 | 30,38 0,361 0,217 | 9,04
197 | 4-Chloro-2-nitrophenol 2,05 1,68 | -1,388| 173,56 | 18,73 0,394 0,166 | 8,91
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Table 2.2. Chemicals, their toxicity to Tetrahymena pyriforms and significant physico-chemical descriptors (testing subset)

N Compound Toxicity | Log D LUMO MW PneEG ABSQon | MaxHp SsOH

1 2-Hydroxybenzylalcohol -0,95 0,30 0,344 | 124,15 37,22 0,783 0,210 17,509

2 2-Fluorophenol 0,19 1,69 0,013 | 112,11 45,03 0,392 0,166 8,544

3 2-Allylphenol 0,33 2,50 0,348 | 134,19 39,70 0,394 0,166 9,194

4 3-Chlorophenol 0,87 2,39 0,019 | 128,56 31,55 0,394 0,166 8,729

5 4,6-Dichlororesorcinol 0,97 2,37 -0,263 | 179,00 29,48 0,734 0,220 17,748

6 4-Benzyloxyphenol 1,04 2,96 0,232 | 200,25 40,93 0,728 0,166 9,086

7 3-lodophenol 1,12 2,92 -0,070| 220,01 35,87 0,394 0,166 8,808

8 2,3-Dichlorophenol 1,28 2,61 -0,262 | 163,00 31,13 0,389 0,169 8,884

9 4-Phenylphenol 1,39 3,20 -0,086| 170,22 41,48 0,360 0,217 9,104

10 4-Hexyloxyphenol 1,64 3,97 0,330 194,30 28,51 0,732 0,219 9,043

11 4-Hexylresorcinol 1,80 3,88 0,327 | 194,30 27,84 0,748 0,219 18,575

12 2,4,5-Trichlorophenol 2,10 3,27 -0,555| 197,44 25,58 0,386 0,171 8,950

13 2-Ethylhexyl-4°- 2,51 5,34 -0,366 | 250,37 32,10 1,011 0,160 9,121
hydroxybenzoate

14 2,3,5,6- 1,17 0,63 -0,994 | 166,08 13,28 0,367 0,183 8,338
Tetrafluorophenol

15 3,4,5,6-Tetrabromo-2- 2,57 4,69 -0,882 | 423,71 30,72 0,402 0,161 9,565
cresol

16 Trimethylhydroguinone 1,34 2,02 0,215| 152,21 38,88 0,747 0,219 18,695

17 4-Nitro-3- 1,65 2,13 -1,585| 207,12 33,09 0,360 0,217 8,760
(trifluoromethyl)-
phenol

18 4-Ethoxyphenol 0,01 1,84 0,327 | 138,18 40,58 0,756 0,172 8,869

19 4-Bromo-2,6- 1,17 3,41 0,085 | 201,07 34,29 0,361 0,217 9,310
dimethylphenol

20 4-Methoxyphenol -0,14 1,31 0,303 | 124,15 46,44 0,759 0,172 8,797




23

2.2. Proposed in literature approaches which have been used for
comparison with the artificial neural networks

Mark Cronin et al. in [5] have proposed and compared different approaches
for developing of QSARs for the prediction of the toxicity of 200 phenols to
Tetrahymena pyriformis based on 108 physico-chemical descriptors. Among them
are response-surface approach or two parameters approach, stepwise regression or
seven parameters approach, two dimension and three dimension partial least
squares. Disadvantages of presented in [5] approaches are observation of outliers.
But in general all these approaches were found to be a good model for solving the
task of prediction of the phenols toxicity.

1. Response-surface analyses QSAR (or two-parameter QSAR)

An effort to model the complete data set using the response-surface
approach was applied. The following relationship was found between the toxicity
of the phenols to T. pyriformis and log D and E, ymo (log D was found to be more

successful in modelling toxicity than log P):

log(IGCs4)™t = 0,53(0,022)logD — 0,96(0,048)E, y0 — 0,58(0,057) (2.2)

2. Stepwise regression analysis QSAR (or seven-parameter QSAR)
Seven descriptors were identified as being important to describe toxicity,

and no redundancy was observed between them.

log(IGCs)™t =
0,38(0,024)LogD — 0,58(0,058)E, ypo + 0,0047(0,0008) MW —
0,018(0,0048)Pyz¢ + 0,050(0,0083)SsOH — 0,61(0,11)ABSQon +
2,69(1,15)MaxHp — 0,99(0,29) 2.3)

3. Regression on partial least squares
Thus, in order to reduce the number of descriptors, principal component

analysis (PCA) was performed. PCA indicated that are seven major components
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describing over 80% of the total variance on the 108 descriptors, from these
components 14 individual variables were chosen to represent the full descriptor set.

In order to investigate the possibility of improving the modelling by the
selection of relevant descriptors, PLS was repeated utilising those variables found
to be useful in both the response-surface and stepwise regression analyses. In total
there are 11 descriptors.

So, in [5] were used two dimension and three dimension PLS models.

2.3. Describing of the used artificial neural networks and choosing of
their parameters

The software package MATLAB R2021b Update 2 (9.11.0.1837725) along
with the Neural Network Toolbox and Statistical Toolbox were used in the present
work (license 10232054 trial — individual) [44—46].

2.3.1. Feed-forward and cascade neural networks

Feed-forward networks as any artificial neural network consist of layers. The
signals are sent to the input layer. Than they are processed by neurons of the
hidden layer. And outputs (final result) are produced by output layer. So, the
signals moves in only direct direction. Each subsequent layer has a connection
from the previous layer.

Figure 2.1 shows a single-layer feed-forward network [46, p. 136].
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Figure 2.1. Feed-forward neural network architecture [46, p. 136]

Cascade forward network is a variation on the feed-forward network but with
one difference. Cascade forward network has additional connections from the input
to every layer, and from each layer to all following layers.

Feed-forward networks and cascade forward network with one hidden layer
and enough neurons in the hidden layer can be used for processing of any
information and for solving various tasks.

Feed-forward and cascade networks as usually have one (rarely more than
one) hidden layer of neurons with sigmoid transfer function followed by an output
layer of neurons with linear transfer function. Presenting of nonlinear transfer
functions in artificial neural network architecture allow to learn nonlinear and
linear input-output relationships.

For correct application of artificial neural network the transfer or activation
functions in each layer, the learning rule, and the number of neurons in each layer
for constructing the architecture of an artificial neural network should be
determined. The input signals multiplied by the weight parameters are summed and
passed through a transfer function to produce the output for neurons.

The initial weights were assigned throughout according to the Nguyen-

Widrow method. This method is fast and in combination with the Levenberg-
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Marquardt training method provides rapid convergence and accuracy of the ANN
algorithms as a whole. Besides, the Nguyen-Widrow algorithm is best suited for
use with the sigmoid and linear transfer functions. Different numbers of hidden
neurons were examined to choose the most efficient architecture of feed-forward
and cascade neural networks [21, 47—49]. In [21] it was shown that for feed-
forward and cascade neural networks the best results were attained with the
Levenberg-Marquardt training method and tangent sigmoid / linear for hidden and

output layers.

Table 2.3. Training parameters of feed-forward and cascade neural networks

Type of parameter Description

Learning type Supervision

Training methods Levenberg-Marquardt
Minimized error function Mean squared error

Number of hidden neurons n—m

Transfer functions Tangent sigmoid and linear
Maximal possible number of training 500 (has never been reached.)
epochs

Learning method Gradient optimization algorithm
Initialization method Nguyen-Widrow algorithm

Two of the most commonly used transfer functions were tested, namely linear
[Eg. (2.4)], and tangent sigmoid [Eq. (2.5)]:

flinear =N ' (24)
e —g™
ftangentsigmoid = m ' (25)

n=wp+b, (2.6)
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where p is the input vector, w is the weight vector of neuron, and b is the bias of
neuron.

The mean squared error was used as the error function to be minimized during
the ANN training [48]:

MSEZI\]/-Ii(yi _ti)2 ] (2.7)

i=1

where M is the number of phenols in the training subset, y; and t; are the predicted
and real outputs of the i-th phenol, correspondingly.

To improve the training efficiency of ANN, the gradient descent optimization
was used as an additional method.

The number of hidden neurons is optimal if the neural network is trained
properly and correct predict the phenols toxicities from the testing subset. If the
number of hidden neurons is small, the performance of algorithms may be
unsatisfactory. If the number of hidden neurons is too high, over-fitting is
expected.

We have found the dependencies of the network training performance on the
numbers of hidden neurons for the feed-forward and cascade neural networks
(Figures 2.2 and 2.3).

So, the optimal number of hidden neurons for feed-forward neural network is
nine, the optimal number of hidden neurons for cascade neural network is six. The
minimum values of mean squared errors of neural networks training are observed

at this numbers of hidden neurons.
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2.3.2. The radial basis function networks

Radial basis function network also consists of an input layer, a hidden layer
and an output layer. Each of these layers has different roles. The input layer include
the same number of neurons as predictor variables. The role of input neurons is
transferring input information to the hidden layer. The input neurons does not
process the input vectors.

The transformation of the vector of characteristics from the input layer to the
hidden layer is nonlinear, while the transformation from the hidden layer to the
output layer is linear. Every hidden neuron can store only one element of the
training set, so number of hidden neurons as many as number of samples in training
set (input vectors).

Layer of hidden neurons uses a radial basis function as activation nonlinear
function for processing the input vectors.

The output of the each hidden neuron of this type of artificial neural

networks can be written as:

@ = g:(I1X = Gll) = exp (- 250), 28)

207

where X = (X, Xo, ..., xn) 1S an m-dimensional vector; g;(X) is a Gaussian activation
function, i=1,2,...,n; n is the number of neurons in the hidden layer; C; is the center
of the i-th activation function; ||*|| is the Euclid norm; and o; is the width of the
receptive field (deviation of the activation function or spread parameter).

The activation of the output layer is a linear combination of the units in the

hidden layer elements, which can be expressed as:

y = Xiz1Wid;, (2.9)
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where w; are weight coefficients connecting the hidden layer to the output layer [24,
26, 50]. For prediction, there is one output neuron for each sample in training /
testing set. Hidden and output layers have biases.

So, one can see that the design of radial basis function networks involves
selecting centers, spread parameter, biases and weights. Each bias in the hidden
layer is set to 0.8326/spread. The centers of activation function are selected
randomly from the data [21].

Two types of radial basis function neural networks were used in this work:

1) RBEN — a radial basis function network, in architecture of which one
neuron are added at a time. The process of neurons addition to the network is
continued until the error goal reached its given value or a maximum number of
neurons has been reached;

2) RBEFN — a radial basis function network with zero error on training
vectors.

In the case of both types of radial basis function neural networks it is
important to choose correct value of spread parameter. It should be large enough
that the radial basis neurons were able to distinguish overlapping regions of the
input vectors, and not so large that all the radial basis neurons form the same
outputs [46].

Figure 2.4 shows general scheme of radial basis network and Figure 2.5

shows detailed radial basis network architecture [46, p. 247, 248].

Input Radial Basis Neuron
N N
11'1‘1 hll,R

P VA

P, | dist | X —»{  \ —>
}j b

R
\/ \ 1 J

a = radbas( || w-p || b)

Figure 2.4. General scheme of radial basis network [46, p. 247]
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As stated above it is important to choose optimal value of the spread

parameter. That is why we have found the optimal value of spread of radial basis

function. Two types of radial basis networks were trained with zero error. That is

why for choosing correct value of parameter spread we have calculated mean

squared error for testing subset [Eq. (2.7)].

The values of mean squared error for testing set for RBFN and RBEFN at

different spread values are shown in Table 2.4.

Table 2.4. The values of mean squared error for testing subset of compounds for

radial basis function networks at different spread values

Spread value Mean squared error
RBFEN RBEFN

1,0 1,70 3,37

0,9 2,80 2,80

0,8 2,48 2,48

0,7 2,32 2,32

0,6 306,80 306,80

So, the minimum mean squared error is observed at spread 1,0 for RBFN

and at spread 0,7 for RBFEN.
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Conclusions to section 2

1. The applicability of the feed-forward, cascade and radial basis artificial
neural networks for the prediction of toxicity of phenols on the basis of their
molecular descriptors has been explored.

2. The optimal architectures (the number of hidden neurons, spread value)
for the feed-forward, cascade and radial basis artificial neural networks have been

determined.
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SECTION 3. RESULTS AND DISCUSSION

This study describes the comparative development and validation of ANNs
for the toxicity to Tetrahymena pyriformis of a heterogeneous group of phenols
utilising a large data set of ubiquitous and easily calculated descriptors.

Results obtained by using of four artificial neural networks were compared
with the results of proposed in literature approaches [5]. These approaches are
described in section 2.2,

Plot of observed toxicity for the testing subset of compounds against that
predicted from different artificial neural networks (with chosen optimal number of

hidden neurons and spread value) are presented on Figures 3.1-3.4.
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Figure 3.1. Plot of observed toxicity for the testing subset of compounds against

that predicted from feed-forward neural network (number of hidden neurons = 9)
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So, results of prediction of phenols toxicity by using of both radial basis
function neural networks are bad. RBFN predicted for all 20 compounds of testing
set the same value of toxicity (-0,1204). RBEFN predicted for all 20 compounds of
testing set the different value of toxicity, but these results are characterized by
large deviations form observed toxicity. And also RBEFN for compounds with
positive toxicity predicted negative toxicity and vise verse.

Results obtained by using of radial basis function networks are worse that
results obtained by using of feed-forward and cascade neural networks. A few
points need to be noted.

Training a radial basis function network often takes much less time than
training any network with sigmoid transfer function for hidden layer and linear
transfer function for output layer. Radial basis function networks usually have
many times more neurons than a cascade neural network or feed-forward network
with the using of sigmoid transfer function in the hidden layer. This situation can
be explained by the fact that neurons with sigmoid transfer function can have

outputs over a large space of the input information, while neurons with radial basis
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transfer function only respond to relatively small regions of the input information
[46].

The values of mean squared error [EqQ. (2.7)] for testing subset of
compounds for used in this work artificial neural networks (with chosen optimal
number of hidden neurons and spread value) and proposed in literature [5] methods

are shown in Table 3.1.

Table 3.1. The values of mean squared error for testing subset of compounds used
in this work artificial neural networks (with chosen optimal number of hidden

neurons and spread value) and proposed in literature methods

Method Mean squared error

Feed-forward neural network 0,0766

Cascade neural network 0,105

Radial basis function neural network 1,704
(RBFN)

Radial basis function neural network 2,319
(RBEFN)

Two-parameter QSAR [Eqg. (2.2)] 0,131

Seven-parameter QSAR [Eq. (2.3)] 0,145

Two dimension PLS model 0,180

Three dimension PLS model 0,148

We can make conclusion, that feed-forward and cascade neural networks are
more effective for prediction of phenols toxicity than proposed in literature [5]
methods.

Predicted toxicities and residual values for the testing subset of compounds
obtained by using of feed-forward neural network, cascade neural network and

proposed in literature methods are shown in Table 3.2.




Table. 3.2. Predicted toxicities and residuals for the testing subset of compounds
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Feed-
forward Cascade neural
Two- Seven- : TWO. _Threg neural network
N C q Obsgr- parameter | parameter gll_rgenmgnl F()jll_ngenmdonl network (number of
ompotn toX?city QSAR [5] | QSAR [5] [g]o © [2}0 © (number of | hidden neurons
hidden =06)
neurons = 9)
Pred® Res’ | Pred® Res” |Pred® Res’ |Pred® Res” |Pred® Res”|Pred® Res’
12 -095 | -0,75 |-0,20 | -0,19 | -0,77 | -0,08 | -1,03 | -0,41 | -0,54 | -0,90 | -0,05 | -0,34 -0,61
Hydroxybenzylalcohol
2 | 2-Fluorophenol 0,19 0,30 |-0,11| 0,00 | 0,29 | 0,04 | 0,24 | -0,10 | 0,29 0,15 0,04 0,48 -0,29
3 | 2-Allylphenol 0,33 0,40 |-0,07| 0,34 | -0,01 | 0,28 | 0,05 | 0,32 | 0,01 | 030 | 0,03 0,60 -0,27
4 | 3-Chlorophenol 0,87 066 | 021 | 059 | 0,29 | 0,60 | 0,27 | 054 | 0,33 | 0,79 | 0,08 0,75 0,12
5 | 4,6-Dichlororesorcinol 0,97 092 | 005 | 1,41 | -0,44 | 1,14 |-0,17 | 0,86 | 0,10 | 1,12 | -0,15 1,05 -0,08
6 | 4-Benzyloxyphenol 1,04 0,76 | 0,28 | 0,66 | 0,38 | 0,63 | 0,40 | 0,58 0,46 1,27 | -0,23 0,85 0,19
7 | 3-lodophenol 1,12 1,03 | 0,09 | 1,29 | -0,07 | 0,83 | 0,29 | 1,06 0,06 1,08 0,04 1,08 0,04
8 | 2,3-Dichlorophenol 1,28 1,05 | 0,23 | 1,02 | 0,26 | 0,99 | 0,28 | 0,86 0,42 1,03 0,25 1,18 0,10
9 | 4-Phenylphenol 1,39 1,19 | 020 | 1,15 | 0,25 | 0,82 | 0,57 | 0,89 | 050 | 1,27 | 0,12 1,24 0,15
10 | 4-Hexyloxyphenol 1,64 1,20 | 044 | 131 | 033 | 1,13 | 0,33 | 1,28 | 0,36 | 1,57 | 0,07 1,48 0,16
11 | 4-Hexylresorcinol 1,80 1,15 | 065 | 1,76 | 0,04 | 1,38 | 0,41 | 1,30 | 050 | 1,30 | 0,50 1,80 0,00
12 | 2,4,5-Trichlorophenol 2,10 168 | 042 | 1,71 | 0,39 | 166 | 0,44 | 1,45 0,65 1,72 0,38 2,15 0,05
13 | 2-Ethylhexyl-4- 251 | 2,59 |-008| 211 | 040 | 189 | 0,62 | 1,72 | 079 | 1,67 | 084 | 248 | 003
hydroxybenzoate
14123,5,6- 1,17 071 | 046 | 1,06 | 0,11 | 1,49 | -0,33| 095 | 0,21 | 0,78 | 0,39 1,17 0,00
Tetrafluorophenol
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15

3,4,5,6-Tetrabromo-2-

o 257 | 274 |-017| 340 | -082 | 286 | 028 | 291 | -033 | 253 | 004 | 342 | -085
16 | Trimethylhydroquinone | 134 | 028 | 1,06 | 0,74 | 0,60 | 043 | 0,91 | 127 | 008 | 1,20 | 014 | 109 | 015
17 | 4-Nitro-3-
(trifluoromethyl)- 165 | 207 |-042| 1,92 | -027 | 157 | 008 | 130 | 035 | 1,74 | -009 | 106 | 059
phenol
18 | 4-Ethoxyphenol 001 | 008 |-007|-011| 012 | 007 | -006|-008| 009 | 001 | 000 | 038 | -037
19 | 4-Bromo-2,6- 117 | 114 | 003 | 141 | -024 | 112 | 005 | 1.26 | -009 | 144 | -027 | 140 | -027
dimethylphenol
20 | 4-Methoxyphenol 014 | -018 | 0,04 | 047 | 033 | 023 | 009 | -0.45 | 031 | -005 | -009 | 023 | -037

*Predicted toxicity

"Residual (observed toxicity — predicted toxicity)
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Conclusions to section 3

1. Radial basis function neural networks are inapplicable for prediction of
phenols toxicity.

2. The efficiency of prediction algorithms decreases in that order: feed-
forward neural network > cascade neural network > response-surface analyses [EQ.
(2.2)] > stepwise regression analysis [Eq. (2.3)] > three dimension PLS model >

two dimension PLS model.



40

CONCLUSIONS

1. The applicability of the feed-forward, cascade and radial basis function
neural networks for the prediction of toxicity of phenols on the basis of their seven
molecular descriptors has been explored, and the optimal parameters of the ANNSs
which provide the correct prediction have been determined.

2. The feed-forward and cascade neural networks are the most suitable for
the prediction of toxicity of phenols and sufficiently exceed the commonly used
methods (QSARs and PLSs). In contrast, radial basis function neural network gave
poor agreement with experiment (observed toxicity).

3. The ability to obtain the toxicity of phenols theoretically without
performing additional experiments provides a valuable tool that can be utilized in
practice in creation of medicines. And it will contribute to the further development

of computational methods for predicting the toxicity of chemical compounds.
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