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INTRODUCTION
Peripheral nerves injury is one of the topical medical, 
social and economic problems, since oftentimes they lead 
to disability of people of both reproductive and productive 
age [1]. One of the crucial factors of surgical treatment of 
nerve trunks injuries ensuring their successful regeneration 
is the precise and tight connection of the proximal and 
distal stumps. To fulfill this goal a whole wealth of suturing 
and adhesive materials, laser and high-frequency electric 
welding techniques were suggested [2-4]. 

AUTONEUROGRAFTING
Peripheral nerve injuries treatment seems quite challenging 
in those cases when the defect is located between the central 
and the peripheral nerve stumps and neurografting should 
be done. Currently microsurgical autoneurografting, which 
is considered the gold standard [5] is given preference to 
in repairing nerve trunks defects [6], However, although 
effective, this surgical intervention has certain limitations, 
including for instance, the injury at the site of donor nerve 
harvesting with subsequent hypo– or anesthesia, scarring of 
the donor site, instances when the painful neuroma develops 
at the central stump of the cutaneous nerve, lack of grafting 
material in the case of significant defect of the injured nerve 
or during reoperation, mismatch between the bundle struc-
ture of the damaged nerve trunk and the grafted segments 
of the cutaneous nerve [7, 8]. This situation stimulates the 

search for alternatives to autoneurografting, one of which – 
alloneurografting has been around for quite a long time, and 
the second one - the use of stem cells (SCs) is quite recent. 

ALLONEUROGRAFTING
Alloneurografting is considered as an alternative to auto-
grafting, since it has a number of advantages. For instance, 
there are no limitations in the amount of grafting material, 
it is possible to select a nerve-donor segment matching the 
damaged nerve trunk in caliber and bundle structure, and 
no additional traumas to the cutaneous nerves are caused. 
The main disadvantage of alloneurografting is the immu-
nological conflict between the recipient and the donor 
nerve [9,10]. In the 80th of the past century a method of 
peripheral nerves grafting by cryopreserved allograft was 
created, studied in the experiment [11] and found its use 
in the clinical setting [12]. Cryopreservation was shown 
to decrease immunogenicity of the nerve tissues [13, 14]. 
Experimental study of neurografting with cryopreserved 
allografts continued [15,16] and the method was success-
fully used in clinical practice [17-18]. Theoretically cryo-
preservation made it possible to create a bank of allografts 
and by thorough matching of donors and recipients by 
the major histocompatibility complex to avoid rejection 
reaction. However this way seemed to be too costly and 
the development has gone along the path of using fresh 
allografts and immune suppression [19, 20]. 
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As immune suppressants cyclosporin A[21], tacrolimus 
(FK506) [14], and rapamicyn[22] were used. It was shown 
that short-term immunosuppression had not created long-
term tolerance [23], but was sufficient for the recipient’s 
neurolemmocytes to migrate to the graft and replace the 
similar donor cells [24].

Short-term immunosuppression in the clinical setting 
[25-28] ensured positive outcomes of alloneurografting 
in patients with peripheral nerves and brachial plexus 
injuries. Immune suppressing therapy during allografting 
of the nerve trunks was further developed in the form 
of the so-called “co-stimulatory blockade”. In work[29] 
allograft of the tibial nerve of mice was made, followed by 
a three-day administration of a monoclonal antibody to 
the anti-CD-40-ligand, thereby blocking the CD-40/CD-
40L co-stimulatory pathway. 60 days after grafting stable 
immunological tolerance [decreased levels of gamma-in-
terferon, IL -4 and IL-2] was observed, which correlated 
with functional restoration of the m. extensor hallucis. 

Under the conditions of sciatic nerve allografting in mice 

[30] immunosuppression was achieved by blocking the 
co-stimulatory pathways LFA-1/ICAM, CD-40/CD-40L and 
CD28/B7 [administration of the anti-lymphocytic antigen-1 
[anti-LFA], anti- CD40-ligand [anti-CD40L] and cytotoxic 
T-lymphocyte immunoglobulin antigen-4 [anti- CTLA4Ig], 
which resulted in successful regeneration of axons. 

In the study [31], blockade of co-stimulatory pathways 
CD-40/CD-40L, CD28/B7 and ICOS/ICOSL also led to the 
improved outcomes of sciatic nerve allografting in mice. 

Taking into account that besides the blockade of four 
co-stimulatory pathways studied in alloneurografting, we 
currently know six more [32], it should be recognized that 
this strategy is quite promising and in the near future may 
be applied in the clinical setting. 

Achieving better outcomes of alloneurografting depends 
both on the refining of microsurgical methods, and on im-
plementation of molecular biology advancements into clin-
ical practice [33]. In the study addressing the problems and 
achievements of alloneurografting [34], it is rightly noted 
that current developments in the field of neurobiology open 
prospects for the development of nerve allografting, which 
in future may surpass autoneurografting by its efficacy. 

USE OF STEM CELLS
The history of using cell technologies to solve the problem 
of nerve trunks regeneration started with the grafting of 
Shwann cells (SchCs) into a nerve defect. SchCs are cells 
which dedifferentiate after nerve injury, transforming 
in fact into the unipotent stem cells [34-37]. Autologous 
neurolemmocytes had been cultivated in vitro, and their 
grafting into the conduit improved both morphological 
and electrophysiological indicators of the reparative pro-
cess [38]. In recent years, the possibility of more efficient 
use of neurolemmocytes grafting has been demonstrated 
through the use of genetically modified cells. The authors 
used Schwann cells with neurotrophin-3[39], FGF-2[40], 
GDNF overexpression [41].

Nevertheless, the use of autologous neurolemmocytes to 
treat acute nerve damage may be complicated by the fact that a 
few weeks of cultivation may be required to obtain a sufficient 
amount of cells. From this perspective the idea of grafting allo-
genic Schwann cells looks attractive. They can be harvested in 
sufficient quantities, preserved in tissue banks and subjected to 
immunological screening for compatibility with the recipient, 
as is the case with organ transplantation. Such an attempt was 
made in the experiment, however the process of cell rejection 
“was way too fast” and regeneration of the nerve fibers did not 
substantially change compared with control [42]. Thus Schwann 
cells grafting, although developed in the experiment, have not 
found broad clinical application. And the next step was the 
search for stem cells [SCs] from different sources to be used as 
grafts of damaged peripheral nerves.

Walsh [43] found that stem cells grafting may be quite 
promising, useful and can enhance treatments of nerve 
injuries. In 2015 the World Journal of Stem Cells published 
a comprehensive review of the use of SC to stimulate periph-
eral nerves regeneration [44]. Detailed information about 
various sources of SCs, such as embryonal SCs, fetal SCs, 
neural SCs, bone marrow derived stem cells (BDMSCs), 
adipose tissue derived stem cells (ATDSCs), dermal SCs, hair 
follicle SCs (HFSCs), dental pulp SCs (DPSCs) and induced 
pluripotent SCs (iPSCs) was provided. The author conclud-
ed that ATDSCs represent the most promising source for 
grafting into the damaged nerve defect. Although alternative 
sources like BDMSCs, fetal SCs, HFSCs and DPSCs have 
large potential, their use is limited at present.

Moreover, the impact of olfactory ensheathing SCs 
(OESCs) and SCs from peripheral blood was also studied. 
Olfactory epithelium cells may be considered as a promis-
ing source for grafting into the damaged structures of CNS 
and PNS [45]. Grafting of Olfactory SCs into the damaged 
peripheral nerve revealed improved regeneration, which 
was confirmed by methods of morphometry [46] and elec-
trical physiology [47]. Moreover, immunohistochemistry 
has proved that OESC exhibit features of the Schwann cells 
and myelinize the regenerating axons. After transplantation 
of Olfactory SCs, Schwann cells and their mixture it was 
found that in the latter case axon regeneration was most 
effective [46]. The authors believe that this is due to the 
stimulating impact of Olfactory SCs on Schwann cells.

Study of the spinal cord neurons reaction to nerve cutting 
revealed that use of OESC and even fragments of olfactory 
epithelium had greatly prevented neuronal death [48]. 

Mononuclears of human peripheral blood contain almost 
0,04% CD133+ cells. Administration of these cells into the 
silicon conduit placed between the central and the periph-
eral stumps of the rat’s sciatic nerve has significantly im-
proved outcomes of its regeneration, which was confirmed 
by methods of electrophysiology and morphometry. It was 
also found that the grafted cells had differentiated into the 
Schwann cells and expressed S100 protein [49]. 

Another promising direction in the SC use for repairing 
nerve trunks defects is their use in conduits or scaffolds in 
accordance with the basic concepts of neuroengineering: 
1) making in the laboratory setting active complexes for 
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creating microenvironment corresponding to that in the 
nerve trunk; 2) seeding the conduits with these complex-
es, which are extremely important for the regeneration of 
nerve fibers and which are absent in the nonneural grafts 
[50]. Conduits have the form of small tubes of different 
diameters filled with biologically active substances, cells, 
micro- and nanofibers in various combinations. 

Historically these tubes made of different materials for 
repairing nerve defects have been tested for over 100 years 
since the late 19th century. For this purpose very different 
biological and non-biological materials have been tried.

Unfortunately, the analysis of experimental and clinical 
material led to the conclusion that this method should not 
be overestimated. The success of this type of operations 
was observed only in cases of repairing small defects in 
the thin nerves. However, the emergence of new materials 
and techniques has revived interest in the use of conduits, 
and the last 4-5 years were marked by a real boom in the 
development of this trend [51]. 

The first conduits created according to the neuro engi-
neering concept were segments of veins or biodegradable 
synthetic tubes enriched with growth factors and SchCs 
[52-55]. In Udina [56] study it was shown that regener-
ating axons have successfully crossed the 6-cm defect of 
the peroneal nerve in rabbits. The ideal conduit should be 
biocompatible, biodegradable, soft and flexible, its cover 
should be semi-permeable, prevent fibrosis and ingrowth 
of connective tissue into the lumen, ensure directed growth 
of axons, meet the technical requirements for further man-
ufacturing, sterilization, long term storage and surgical use 
[57]. In [58] silk conduits with gold nanoparticles seeded 
with SchCs culture were used for this purpose. Successful 
regeneration of the rat sciatic nerve was observed after 
simulation of 10mm defect.

Conduits are increasingly used in clinical practice [59]. 
Use of neuroengineering approaches is promising [60] and 
in future is sure to give positive functional results along 
with the autoneurografts [61].

Over the last 3-4 years study of the SCs impact on periph-
eral nerve regeneration has continued. Thus the impact of 
BDMSCs [62, 63], HFSCs [64], DPSCs [65,66], cordal [67] 
and peripheral [68] blood has been studied. So, cell tech-
nologies are promising and can ensure improved results 
of nerve injury treatment. However, the number of works 
where cell technologies are used for the damaged nerve in 
clinical setting is still relatively small. Apparently, this is 
due to the lack of long-term results of SC transplantation 
and the caution regarding their possible oncotransforma-
tion or autoimmune process. Therefore, more profound 
fundamental studies in this area are needed. 

So, each of the discussed methods has its strengths and 
limitations (Table 1). The current situation resembles the 
well- known game, which gave the title of this review. And 
although autoneurografting is currently the “gold standard”, 
each of the other two methods has its own advantages and 
in the near future may receive the “platinum” status.

CONCLUSION	
In concluding this review, it should be stated that the use 
of alloneurografts and conduits seeded with SCs in exper-
iments on animals allowed to obtain positive results com-
parable to those of autoneurografting. In clinical practice 
autoneurografting remains the gold standard, however not 
free from limitations as discussed above. Alternative meth-
ods (alloneurografting, conduits) are successfully used for 
small defects of the thin nerves. Further development of 
immunosupression methods, reduction of immunogenicity 
of alloneurografts, and bioengineering will allow to create 
a method for bridging nerve trunks defects free from the 
limitations of autoneurografting and equal to it in efficacy.

ABBREVIATIONS
ATDSCs - adipose tissue derived stem cells
BDMSCs – bone marrow-derived mesenchymal stem cells

Table 1. Strengths and limitations of neurografting methods

Grafting material
Injury at 

the site of 
harvesting 

Scarcity 
of 

grafting 
material

Mismatch 
of the 

bundle 
structure 

Mismatch 
of the 

caliber

Immunological 
conflict and 
the need for 

immunosuppression

Lengthy 
cultivation

Potential 
oncotransformation

Autografting + + + + - - -

Allografting - - - - + - -

Embryonal SCs - - + - - + +

Fetal SCs - - + - - + -

Neural SCs + - + - - + -

BDMSCs + - - - + -

ADSCs + - + - - + -

HFSCs + - + - - + -

DPSCs - - + - - + -

iPSCs - - + - - + +
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DPSCs -- dental pulp stem cells
HFSCs - hair follicle stem cells
iPSCs - induced pluripotent stem cells
OESCs - olfactory ensheathing stem cells 
SchCs- Schwann cells
SCs – stem cells
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